Abstract

Additive manufacturing (AM) is a rapidly growing technology within the industry and education sectors. Despite this, there lacks a comprehensive tool to guide AM novices in evaluating the suitability of a given design for fabrication by the range of AM processes. Existing design for additive manufacturing (DfAM) evaluation tools tend to focus on only certain key process-dependent DfAM considerations. By contrast, the purpose of this research is to propose a tool that guides a user to comprehensively evaluate their chosen design and educates the user on an appropriate DfAM strategy. The tool incorporates both opportunistic and restrictive elements, integrates the seven major AM processes, outputs an evaluative score, and recommends processes and improvements for the input design. This paper presents a thorough framework for this evaluation tool and details the inclusion of features such as dual-DfAM consideration, process recommendations, and a weighting system for restrictive DfAM. The result is a detailed recommendation output that helps users to determine not only “Can you print your design?” but also “Should you print your design?” by combining several key research studies to build a comprehensive user design tool. This research also demonstrates the potential of the framework through a series of user-based studies, in which the opportunistic side of the tool was found to have significantly improved novice designers’ ability to evaluate designs. The preliminary framework presented in this paper establishes a foundation for future studies to refine the tool’s accuracy using more data and expert analysis.

References

1.
Reports and Data
,
2019
, “Additive Manufacturing Market to Reach USD 23.33 Billion By 2026,” GlobeNewswire News Room. https:/www.globenewswire.com/en/news-release/2019/03/18/1756526/0/en/Additive-Manufacturing-Market-To-Reach-USD-23-33-Billion-By-2026.html, Accessed February 13, 2022
2.
Lettori
,
J.
,
Raffaeli
,
R.
,
Peruzzini
,
M.
,
Schmidt
,
J.
, and
Pellicciari
,
M.
,
2020
, “
Additive Manufacturing Adoption in Product Design: An Overview From Literature and Industry
,”
Procedia Manuf.
,
51
, pp.
655
662
.
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
.
4.
2019
, “How Mature Is Your Industry in Its Adoption of 3D Printing? [Infographic],” AMFG. https://amfg.ai/2019/07/09/how-mature-is-your-industry-in-its-adoption-of-3d-printing/, Accessed January 30, 2022
5.
Alfaify
,
A.
,
Saleh
,
M.
,
Abdullah
,
F. M.
, and
Al-Ahmari
,
A. M.
,
2020
, “
Design for Additive Manufacturing: A Systematic Review
,”
Sustainability
,
12
(
19
),
Art. No. 19
.
6.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des
,
69
, pp.
65
89
.
7.
Gibson
,
I.
,
Goenka
,
G.
,
Narasimhan
,
R.
, and
Bhat
,
N.
,
2010
, “
Design Rules for Additive Manufacture
,”
21st Annu. Int. Solid Free. Fabr. Symp.—Addit. Manuf. Conf. SFF 2010
, pp.
705
716
.
8.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
9.
Ko
,
H.
,
Moon
,
S. K.
, and
Hwang
,
J.
,
2015
, “
Design for Additive Manufacturing in Customized Products
,”
Int. J. Precis. Eng. Manuf.
,
16
(
11
), pp.
2369
–2375
.
10.
Booth
,
J.
,
Alperovich
,
J.
,
Reid
,
T.
, and
Ramani
,
K.
,
2016
, “
The Design for Additive Manufacturing Worksheet
,” Paper No. IDETC2016-60407.
11.
“Additive Manufacturing in Education & Research | InfiniteTM,” Infinite Material Solutions. https://infinitematerialsolutions.com/eu/en/learn/article/industry-education-and-research, Accessed March 03, 2023.
12.
Hague
,
R.
,
Mansour
,
S.
, and
Saleh
,
N.
,
2004
, “
Material and Design Considerations for Rapid Manufacturing
,”
Int. J. Prod. Res
,
42
(
22
), pp.
4691
4708
.
13.
Doubrovski
,
Z.
,
Verlinden
,
J. C
, and
Geraedts
,
J.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
Proceedings of ASME International Design Engineering Technical Conferences
, Vol. 9, pp.
635
646
14.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
15.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A.-K.
, and
Vietor
,
T.
,
2018
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interact. Des. Manuf.
,
12
(
2
),
481
493
.
16.
Pereira
,
T.
,
Kennedy
,
J. V.
, and
Potgieter
,
J.
,
2019
, “
A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the job
,”
Procedia Manuf.
,
30
, pp.
11
18
.
17.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
, “Binder Jetting,”
Additive Manufacturing Technologies
,
I.
Gibson
,
D.
Rosen
,
B.
Stucker
, and
M.
Khorasani
, eds.,
Springer International Publishing
,
Cham
, pp.
237
252
.
18.
Chin
,
S. Y.
,
Dikshit
,
V.
,
Meera Priyadarshini
,
B.
, and
Zhang
,
Y.
,
2020
, “
Powder-Based 3D Printing for the Fabrication of Device With Micro and Mesoscale Features
,”
Micromachines
,
11
(
7
), p.
658
.
19.
“Manufacturing for Design, Not the Other Way Around,” https://www.mmsonline.com/columns/manufacturing-for-design-not-the-other-way-around, Accessed February 4, 2022
20.
Chong
,
S.
,
Pan
,
G.-T.
,
Chin
,
J.
,
Show
,
P. L.
,
Yang
,
T. C. K.
, and
Huang
,
C.-M.
,
2018
, “
Integration of 3D Printing and Industry 4.0 Into Engineering Teaching
,”
Sustainability
,
10
(
11
),
Art. No. 11
.
21.
Juhasz
,
M.
,
Tiedemann
,
R.
,
Dumstorff
,
G.
,
Conner
,
B.
,
Lang
,
W.
, and
MacDonald
,
E.
,
May 2020
, “
Hybrid Directed Energy Deposition for Fabricating Metal Structures With Embedded Sensors for the Oil and Gas Industry
,”
OTC
,
Houston, TX
,
May 6
, p.
D031S042R001
.
22.
Pradel
,
P.
,
Zhu
,
Z.
,
Bibb
,
R.
, and
Moultrie
,
J.
,
2018
, “
A Framework for Mapping Design for Additive Manufacturing Knowledge for Industrial and Product Design
,”
J. Eng. Des.
,
29
(
6
), pp.
291
326
.
23.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Built to Win? Exploring the Role of Competitive Environments on Students’ Creativity in Design for Additive Manufacturing Tasks
,”
J. Eng. Des.
,
31
(
11–12
), pp.
574
604
.
24.
Bracken
,
J.
,
Pomorski
,
T.
,
Armstrong
,
C.
,
Prabhu
,
R.
,
Simpson
,
T. W.
,
Jablokow
,
K.
,
Cleary
,
W.
, and
Meisel
,
N. A.
,
2020
, “
Design for Metal Powder Bed Fusion: The Geometry for Additive Part Selection (GAPS) Worksheet
,”
Addit. Manuf.
,
35
, p.
101163
.
25.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2018
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
26.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2019
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
2
), pp.
493
503
.
27.
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Principle Cards: Toolset to Support Innovations With Additive Manufacturing
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, ASME Paper No. DETC2019-97231.
28.
Yang
,
S.
,
Page
,
T.
,
Zhang
,
Y.
, and
Zhao
,
Y. F.
,
2020
, “
Towards an Automated Decision Support System for the Identification of Additive Manufacturing Part Candidates
,”
J. Intell. Manuf.
,
31
(
8
), pp.
1917
1933
.
29.
Armillotta
,
A.
,
2008
, “
Selection of Layered Manufacturing Techniques by an Adaptive AHP Decision Model
,”
Rob. Comput. Integr. Manuf.
,
24
(
3
), pp.
450
461
.
30.
Kim
,
G. D.
, and
Oh
,
Y. T.
,
2008
, “
A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
222
(
2
), pp.
201
215
.
31.
Byun
,
H. S.
, and
Lee
,
K. H.
,
2005
, “
A Decision Support System for the Selection of a Rapid Prototyping Process Using the Modified TOPSIS Method
,”
Int. J. Adv. Manuf. Technol.
,
26
(
11
), pp.
1338
1347
.
32.
Zhang
,
Y.
, and
Bernard
,
A.
,
2014
, “
An Integrated Decision-Making Model for Multi-Attributes Decision-Making (MADM) Problems in Additive Manufacturing Process Planning
,”
Rapid Prototyp. J.
,
20
(
5
), pp.
377
389
.
33.
Tedia
,
S.
, and
Williams
,
C. B.
,
2016
, “
Manufacturability Analysis Tool for Additive Manufacturing Using Voxel-Based Geometric Modeling
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
3
22
.
34.
Wei
,
C.
, and
Li
,
L.
,
2021
, “
Recent Progress and Scientific Challenges in Multi-Material Additive Manufacturing via Laser-Based Powder bed Fusion
,”
Virtual Phys. Prototyp.
,
16
(
3
), pp.
347
371
.
35.
Alvarez
,
F. J. A.
,
Parra
,
E. B. B.
, and
Tubio
,
F. M.
,
2015
, “
Assessment of 3D Models Used in Contours Studies
,”
Univers. J. Educ. Res.
,
3
(
11
), pp.
877
890
.
36.
Taleyarkhan
,
M.
,
Dasgupta
,
C.
,
Garcia
,
J. M.
, and
Magana
,
A. J.
,
2018
, “
Investigating the Impact of Using a CAD Simulation Tool on Students’ Learning of Design Thinking
,”
J. Sci. Educ. Technol.
,
27
(
4
), pp.
334
347
.
37.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manuf. Mater. Process.
,
2
(
4
),
Art. No. 4
.
38.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.
39.
Zhang
,
F.
,
Zhu
,
L.
,
Li
,
Z.
,
Wang
,
S.
,
Shi
,
J.
,
Tang
,
W.
,
Li
,
N.
, and
Yang
,
J.
,
2021
, “
The Recent Development of vat Photopolymerization: A Review
,”
Addit. Manuf.
,
48
, p.
102423
.
40.
Gebhardt
,
A.
,
2011
,
Understanding Additive Manufacturing
,
Carl Hanser Verlag GmbH & Co. KG
,
Munich, Germany
.
41.
Espalin
,
D.
,
Muse
,
D. W.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.
42.
Lin
,
M.-H.
,
Chen
,
H.
, and
Liu
,
K.-S.
,
2017
, “
A Study of the Effects of Digital Learning on Learning Motivation and Learning Outcome
,”
Eurasia J. Math. Sci. Technol. Educ.
,
13
(
7
), pp.
3553
3564
.
43.
Teets
,
J. M.
,
Tegarden
,
D. P.
, and
Russell
,
R. S.
,
2010
, “
Using Cognitive fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data
,”
IEEE Trans. Vis. Comput. Graphics
,
16
(
5
), pp.
841
853
.
44.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
,
Cutler
,
S. L.
, and
Meisel
,
N. A.
,
2023
, “
Teaching Designing for Additive Manufacturing: Formulating Educational Interventions That Encourage Design Creativity
,”
3D Print. Addit. Manuf.
,
10
(
2
), pp.
356
372
.
You do not currently have access to this content.