Abstract

A multi-fidelity integration method is proposed to analyze the reliability of multiple performance indicators (MPI) for industrial robots. In order to high-fidelity mapping the performance of industrial robots, a unified multi-domain model (UMDM) is first established. The contribution-degree analysis is then used to classify the input random variables into interacting and non-interacting ones. Thus, the high-dimensional integration of reliability analysis is separated into a low-dimensional integration and multiple one-dimensional integrations in an additive form. Here, the low-dimensional integration consisting of the interacting variables is calculated using the high-precision mixed-degree cubature formula (MDCF), and the computational results are treated as high-fidelity data. The one-dimensional integration consisting of non-interacting variables is then computed by the highly efficient five-point Gaussian Hermite quadrature (FGHQ), and the computational results are named low-fidelity data. A multi-fidelity integration method is constructed by fusing the high-fidelity data and the low-fidelity data to obtain the statistical moments of the MPI. Subsequently, the probability density function and the failure probability of the MPI are estimated using the saddlepoint approximation method. Finally, some representative methods are performed to verify the superiority of the proposed method.

References

1.
Wu
,
J.
,
Zhang
,
D.
, and
Han
,
X.
,
2022
, “
A Novel Classification Method to Random Samples for Efficient Reliability Sensitivity Analysis
,”
ASME J. Mech. Des.
,
144
(
10
), p.
101703
.
2.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
.
3.
Wu
,
H.
, and
Du
,
X.
,
2023
, “
Time-and Space-Dependent Reliability-Based Design With Envelope Method
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031708
.
4.
Zhang
,
X.
,
Pandey
,
M.
, and
Zhang
,
Y.
,
2014
, “
Computationally Efficient Reliability Analysis of Mechanisms Based on a Multiplicative Dimensional Reduction Method
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061006
.
5.
Cao
,
L.
,
Liu
,
J.
,
Zhang
,
J.
,
Jiang
,
C.
, and
Zhang
,
D.
,
2023
, “
Positioning Accuracy Reliability Analysis of Industrial Robots Considering Epistemic Uncertainty and Correlation
,”
ASME J. Mech. Des.
,
145
(
2
), p.
023303
.
6.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2021
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
.
7.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2021
, “
Time-Dependent System Kinematic Reliability Analysis for Robotic Manipulators
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041704
.
8.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Chirikjian
,
G. S.
,
2021
, “
An Enhanced Moment-Based Approach to Time-Dependent Positional Reliability Analysis for Robotic Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104167
.
9.
Tang
,
Z.
,
Peng
,
J.
,
Sun
,
J.
, and
Meng
,
X.
,
2022
, “
Non-Probabilistic Reliability Analysis of Robot Accuracy Under Uncertain Joint Clearance
,”
Machines
,
10
(
10
), p.
917
.
10.
Rao
,
S.
, and
Bhatti
,
P.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Safe.
,
72
(
1
), pp.
47
58
.
11.
Kim
,
J.
,
Song
,
W. J.
, and
Kang
,
B. S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1225
1237
.
12.
Zhang
,
D.
,
Liu
,
S.
,
Wu
,
J.
,
Wu
,
Y.
, and
Liu
,
J.
,
2020
, “
An Active Learning Hybrid Reliability Method for Positioning Accuracy of Industrial Robots
,”
J. Mech. Sci. Technol.
,
34
(
8
), pp.
3363
3372
.
13.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2020
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
887
900
.
14.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
15.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Modell.
,
82
, pp.
189
216
.
16.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
17.
Huang
,
P.
,
Huang
,
H. Z.
,
Li
,
Y. F.
, and
Li
,
H.
,
2021
, “
Positioning Accuracy Reliability Analysis of Industrial Robots Based on Differential Kinematics and Saddlepoint Approximation
,”
Mech. Mach. Theory
,
162
, p.
104367
.
18.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
.
19.
Wu
,
J.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
On Reliability Analysis Method Through Rotational Sparse Grid Nodes
,”
Mech. Syst. Signal Process.
,
147
, p.
107106
.
20.
Qian
,
H. M.
,
Li
,
Y. F.
, and
Huang
,
H. Z.
,
2020
, “
Time-Variant Reliability Analysis for Industrial Robot RV Reducer Under Multiple Failure Modes Using Kriging Model
,”
Reliab. Eng. Syst. Safe.
,
199
, p.
106936
.
21.
Zhang
,
X.
,
Wang
,
L.
, and
Sorensen
,
J. D.
,
2020
, “
AKOIS: An Adaptive Kriging Oriented Importance Sampling Method for Structural System Reliability Analysis
,”
Struct. Saf.
,
82
, p.
101876
.
22.
Zhang
,
X.
,
Lu
,
Z.
, and
Cheng
,
K.
,
2021
, “
AK-DS: An Adaptive Kriging-Based Directional Sampling Method for Reliability Analysis
,”
Mech. Syst. Signal Process.
,
156
, p.
107610
.
23.
Song
,
S.
,
Bai
,
Z.
,
Kucherenko
,
S.
,
Wang
,
L.
, and
Yang
,
C.
,
2021
, “
Quantile Sensitivity Measures Based on Subset Simulation Importance Sampling
,”
Reliab. Eng. Syst. Safe.
,
208
, p.
107405
.
24.
Abyani
,
M.
, and
Bahaari
,
M. R.
,
2020
, “
A Comparative Reliability Study of Corroded Pipelines Based on Monte Carlo Simulation and Latin Hypercube Sampling Methods
,”
Int. J. Press. Vessels Pip.
,
181
, p.
104079
.
25.
Song
,
J.
,
Wei
,
P.
,
Valdebenito
,
M.
, and
Beer
,
M.
,
2021
, “
Active Learning Line Sampling for Rare Event Analysis
,”
Mech. Syst. Signal Process.
,
147
, p.
107113
.
26.
Jiang
,
C.
,
Lu
,
G.
,
Han
,
X.
, and
Bi
,
R. G.
,
2014
, “
Some Important Issues on First-Order Reliability Analysis With Nonprobabilistic Convex Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
034501
.
27.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
6
(
4
), p.
041001
.
28.
Yusri
,
I.
,
Abdul Majeed
,
A. P. P.
,
Mamat
,
R.
,
Ghazali
,
M. F.
,
Awad
,
O. I.
, and
Azmi
,
W. H.
,
2018
, “
A Review on the Application of Response Surface Method and Artificial Neural Network in Engine Performance and Exhaust Emissions Characteristics in Alternative Fuel
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
665
686
.
29.
Wan
,
H. P.
,
Ren
,
W. X.
, and
Todd
,
M. D.
,
2020
, “
Arbitrary Polynomial Chaos Expansion Method for Uncertainty Quantification and Global Sensitivity Analysis in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
142
, p.
106732
.
30.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.
31.
Pepper
,
N.
,
Crespo
,
L.
, and
Montomoli
,
F.
,
2022
, “
Adaptive Learning for Reliability Analysis Using Support Vector Machines
,”
Reliab. Eng. Syst. Safe.
,
226
, p.
108635
.
32.
He
,
W.
,
Li
,
G.
,
Hao
,
P.
, and
Zeng
,
Y.
,
2019
, “
Maximum Entropy Method-Based Reliability Analysis With Correlated Input Variables Via Hybrid Dimension-Reduction Method
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101405
.
33.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
34.
Li
,
H.
,
Wang
,
P.
,
Chang
,
Q.
,
Zhou
,
C.
, and
Yue
,
Z.
,
2021
, “
Hybrid Multiplicative Dimension Reduction Method for Uncertainty Analysis of Engineering Structures
,”
Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
,
235
(
1
), pp.
144
155
.
35.
Xu
,
J.
, and
Dang
,
C.
,
2019
, “
A New Bivariate Dimension Reduction Method for Efficient Structural Reliability Analysis
,”
Mech. Syst. Signal Process.
,
115
, pp.
281
300
.
36.
Xu
,
J.
,
Zhang
,
Y.
, and
Dang
,
C.
,
2020
, “
A Novel Hybrid Cubature Formula With Pearson System for Efficient Moment-Based Uncertainty Propagation Analysis
,”
Mech. Syst. Signal Process.
,
140
, p.
106661
.
37.
Zhang
,
D.
,
Jia
,
J.
,
Han
,
Z.
,
Ouyang
,
H.
,
Liu
,
J.
, and
Han
,
X.
,
2023
, “
An Efficient Uncertainty Quantification and Propagation Method Through Skewness and Kurtosis Fitting Region
,”
Struct. Multidiscip. Optim.
,
66
(
2
), p.
36
.
38.
He
,
W.
,
Yang
,
H.
,
Zhao
,
G.
,
Zeng
,
Y.
, and
Li
,
G.
,
2021
, “
A Quantile-Based SORA Method Using Maximum Entropy Method With Fractional Moments
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041702
.
39.
Zhou
,
D.
,
Zhang
,
X.
, and
Zhang
,
Y.
,
2016
, “
Dynamic Reliability Analysis for Planetary Gear System in Shearer Mechanisms
,”
Mech. Mach. Theory
,
105
, pp.
244
259
.
40.
Xiao
,
F.
,
Li
,
G.
,
Jiang
,
D.
,
Xie
,
Y.
,
Yun
,
J.
,
Liu
,
Y.
,
Huang
,
L.
, and
Fang
,
Z.
,
2021
, “
An Effective and Unified Method to Derive the Inverse Kinematics Formulas of General Six-DOF Manipulator With Simple Geometry
,”
Mech. Mach. Theory
,
159
, p.
104265
.
41.
Tan
,
C.
,
Zhao
,
H.
, and
Ding
,
H.
,
2022
, “
Identification of Dynamic Parameters of Closed-Chain Industrial Robots Considering Motor Couplings
,”
Comput. Electr. Eng.
,
99
, p.
107740
.
42.
Zheng
,
K.
,
Hu
,
Y.
, and
Yu
,
W.
,
2020
, “
A Novel Parallel Recursive Dynamics Modeling Method for Robot With Flexible Bar-Groups
,”
Appl. Math. Modell.
,
77
, pp.
267
288
.
43.
Xu
,
J.
,
Du
,
Y.
, and
Zhou
,
L.
,
2021
, “
A Multi-Fidelity Integration Rule for Statistical Moments and Failure Probability Evaluations
,”
Struct. Multidiscip. Optim.
,
64
(
3
), pp.
1305
1326
.
44.
Wu
,
J.
,
Tao
,
Y.
, and
Han
,
X.
,
2023
, “
Polynomial Chaos Expansion Approximation for Dimension-Reduction Model-Based Reliability Analysis Method and Application to Industrial Robots
,”
Reliab. Eng. Syst. Safe.
,
234
, p.
109145
.
45.
Zhang
,
Y.
, and
Xu
,
J.
,
2021
, “
Efficient Reliability Analysis With a CDA-Based Dimension-Reduction Model and Polynomial Chaos Expansion
,”
Comput. Meth. Appl. Mech. Eng.
,
373
, p.
113467
.
46.
Eweis-Labolle
,
J. T.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2022
, “
Data Fusion With Latent Map Gaussian Processes
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091703
.
47.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
You do not currently have access to this content.