Abstract

This article explores various uncertain control co-design (UCCD) problem formulations. While previous work offers formulations that are method-dependent and limited to only a handful of uncertainties (often from one discipline), effective application of UCCD to real-world dynamic systems requires a thorough understanding of uncertainties and how their impact can be captured. Since the first step is defining the UCCD problem of interest, this article aims at addressing some of the limitations of the current literature by identifying possible sources of uncertainties in a general UCCD context and then formalizing ways in which their impact is captured through problem formulation alone (without having to immediately resort to specific solution strategies). We first develop and then discuss a generalized UCCD formulation that can capture uncertainty representations presented in this article. Issues such as the treatment of the objective function, the challenge of the analysis-type equality constraints, and various formulations for inequality constraints are discussed. Then, more specialized problem formulations such as stochastic in expectation, stochastic chance-constrained, probabilistic robust, worst-case robust, fuzzy expected value, and possibilistic chance-constrained UCCD formulations are presented. Key concepts from these formulations, along with insights from closely-related fields, such as robust and stochastic control theory, are discussed, and future research directions are identified.

References

1.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-Design: An Engineering Game Changer
,”
Adv. Contr. Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.
2.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
3.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
,
40
(
3
), pp.
545
552
.
4.
Ba-Abbad
,
M. A.
,
Nikolaidis
,
E.
, and
Kapania
,
R. K.
,
2006
, “
New Approach for System Reliability-Based Design Optimization
,”
AIAA J.
,
44
(
5
), pp.
1087
1096
.
5.
Yang
,
J.
,
Zolotas
,
A.
,
Chen
,
W.-H.
,
Michail
,
K.
, and
Li
,
S.
,
2011
, “
Robust Control of Nonlinear MAGLEV Suspension System With Mismatched Uncertainties Via DOBC Approach
,”
ISA Trans.
,
50
(
3
), pp.
389
396
.
6.
Dullerud
,
G. E.
, and
Paganini
,
F.
,
2013
,
A Course in Robust Control Theory: A Convex Approach
,
Springer
,
New York
.
7.
Åström
,
K. J.
,
1970
,
Introduction to Stochastic Control Theory
,
Academic Press Inc
,
New York
.
8.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.
9.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011403
.
10.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control Co-Design With Receding-Horizon MPC
,”
American Control Conference
,
New Orleans, LA
,
May 25–28
, pp.
373
379
.
11.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
12.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2022
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
13.
Ruszczyński
,
A.
, and
Shapiro
,
A.
,
2003
, “
Stochastic Programming Models
,”
Handb. Oper. Res. Manage. Sci.
,
10
, pp.
1
64
.
14.
Powell
,
W. B.
,
2019
, “
A Unified Framework for Stochastic Optimization
,”
Eur. J. Oper. Res.
,
275
(
3
), pp.
795
821
.
15.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization-A Comprehensive Survey
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
16.
Gorissen
,
B. L.
, and
Yanıkoğlu
,
İ.
,
2015
, “
A Practical Guide to Robust Optimization
,”
Omega
,
53
, pp.
124
137
.
17.
Bertsimas
,
D.
,
Brown
,
D. B.
, and
Caramanis
,
C.
,
2011
, “
Theory and Applications of Robust Optimization
,”
SIAM Rev.
,
53
(
3
), pp.
464
501
.
18.
Zadeh
,
L. A.
,
1996
, “Fuzzy Sets,”
Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems
,
World Scientific
,
Singapore
, pp.
394
432
.
19.
Zadeh
,
L. A.
,
1978
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
3
28
.
20.
Liu
,
B.
, and
Liu
,
B.
,
2009
,
Theory and Practice of Uncertain Programming
,
Springer
,
Germany
.
21.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
22.
Mavromatidis
,
G.
,
Orehounig
,
K.
, and
Carmeliet
,
J.
,
2018
, “
A Review of Uncertainty Characterisation Approaches for the Optimal Design of Distributed Energy Systems
,”
Renew. Sust. Energ. Rev.
,
88
, pp.
258
277
.
23.
Dadkhah
,
N.
, and
Mettler
,
B.
,
2012
, “
Survey of Motion Planning Literature in the Presence of Uncertainty: Considerations for UAV Guidance
,”
J. Intell. Robot Syst.
,
65
, pp.
233
246
.
24.
Li
,
Z.
, and
Ierapetritou
,
M.
,
2008
, “
Process Scheduling Under Uncertainty: Review and Challenges
,”
Comput. Chem. Eng.
,
32
(
4–5
), pp.
715
727
.
25.
Aien
,
M.
,
Hajebrahimi
,
A.
, and
Fotuhi-Firuzabad
,
M.
,
2016
, “
A Comprehensive Review on Uncertainty Modeling Techniques in Power System Studies
,”
Renew. Sustainable Energy Rev.
,
57
, pp.
1077
1089
.
26.
Tian
,
W.
,
Heo
,
Y.
,
De Wilde
,
P.
,
Li
,
Z.
,
Yan
,
D.
,
Park
,
C. S.
,
Feng
,
X.
, and
Augenbroe
,
G.
,
2018
, “
A Review of Uncertainty Analysis in Building Energy Assessment
,”
Renew. Sustainable Energy Rev.
,
93
, pp.
285
301
.
27.
Yan
,
J.
,
Liu
,
Y.
,
Han
,
S.
,
Wang
,
Y.
, and
Feng
,
S.
,
2015
, “
Reviews on Uncertainty Analysis of Wind Power Forecasting
,”
Renew. Sustainable Energy Rev.
,
52
, pp.
1322
1330
.
28.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
,
Denver, CO
,
June 4–6
, pp.
3375
3380
.
29.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2017
, “
Unified Scaling of Dynamic Optimization Design Formulations
,”
International Design Engineering Technical Conferences
, Paper No. DETC2017-67676.
30.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.
31.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
32.
Zio
,
E.
, and
Pedroni
,
N.
,
2013
, “
Literature Review of Methods for Representing Uncertainty
,” Technical Report,
Foundation for an Industrial Safety Culture
.
33.
Hofer
,
E.
,
Kloos
,
M.
,
Krzykacz-Hausmann
,
B.
,
Peschke
,
J.
, and
Woltereck
,
M.
,
2002
, “
An Approximate Epistemic Uncertainty Analysis Approach in the Presence of Epistemic and Aleatory Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
77
(
3
), pp.
229
238
.
34.
Wang
,
Z.
, and
Ghanem
,
R.
,
2021
, “
An Extended Polynomial Chaos Expansion for PDF Characterization and Variation With Aleatory and Epistemic Uncertainties
,”
Comput. Meth. Appl. Mech. Eng.
,
382
, p.
113854
.
35.
Azad
,
S.
, and
Herber
,
D. R.
,
2022
, “
Investigations Into Uncertain Control Co-Design Implementations for Stochastic in Expectation and Worst-Case Robust
,”
International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2022-95229.
36.
Filev
,
D.
, and
Angelov
,
P.
,
1992
, “
Fuzzy Optimal Control
,”
Fuzzy Sets Syst.
,
47
(
2
), pp.
151
156
.
37.
Liu
,
B.
, and
Liu
,
Y.-K.
,
2002
, “
Expected Value of Fuzzy Variable and Fuzzy Expected Value Models
,”
IEEE Trans. Fuzzy Syst.
,
10
(
4
), pp.
445
450
.
38.
Zhu
,
Y.
,
2009
, “
A Fuzzy Optimal Control Model
,”
J. Uncertain Syst.
,
3
(
4
), pp.
270
279
.
39.
Soize
,
C.
,
2017
,
Uncertainty Quantification
,
Springer
,
Switzerland
.
40.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
41.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
SIAM
,
Philadelphia, PA
.
42.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
,
SIAM
,
Philadelphia, PA
.
43.
Rao
,
A. V.
,
2009
, “
A Survey of Numerical Methods for Optimal Control
,”
Adv. Astronaut. Sci.
,
135
(
1
), pp.
497
528
.
44.
Greco
,
C.
,
Di Carlo
,
M.
,
Vasile
,
M.
, and
Epenoy
,
R.
,
2020
, “
Direct Multiple Shooting Transcription With Polynomial Algebra for Optimal Control Problems Under Uncertainty
,”
Acta Astronaut.
,
170
, pp.
224
234
.
45.
Lavretsky
,
E.
, and
Hovakimyan
,
N.
,
2007
, “
Stable Adaptation in the Presence of Actuator Constraints With Flight Control Applications
,”
J. Guid. Contr. Dyn.
,
30
(
2
), pp.
337
345
.
46.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations
,
Princeton University Press
,
Princeton, NJ
.
47.
Hu
,
X.
,
Xu
,
B.
, and
Hu
,
C.
,
2018
, “
Robust Adaptive Fuzzy Control for HFV With Parameter Uncertainty and Unmodeled Dynamics
,”
IEEE Trans. Ind. Electron.
,
65
(
11
), pp.
8851
8860
.
48.
Badwe
,
A. S.
,
Gudi
,
R. D.
,
Patwardhan
,
R. S.
,
Shah
,
S. L.
, and
Patwardhan
,
S. C.
,
2009
, “
Detection of Model-Plant Mismatch in MPC Applications
,”
J. Process Control
,
19
(
8
), pp.
1305
1313
.
49.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
Robust Combined Design and Control Optimization of Hybrid-Electric Vehicles Using MDSDO
,”
IEEE Trans. Veh. Technol.
,
70
(
5
), pp.
4139
4152
.
50.
Andrieu
,
L.
,
Cohen
,
G.
, and
Vázquez-Abad
,
F.
,
2007
, “
Stochastic Programming With Probability Constraint
,” arxiv:0708.0281.
51.
Rockafellar
,
R. T.
, and
Uryasev
,
S.
,
2002
, “
Conditional Value-at-Risk for General Loss Distributions
,”
J. Bank Finan.
,
26
(
7
), pp.
1443
1471
.
52.
Baringo
,
L.
, and
Rahimiyan
,
M.
,
2020
, “Optimal Scheduling of a Risk-Neutral Virtual Power Plant in Energy Markets,”
Virtual Power Plants and Electricity Markets
,
Springer
,
Switzerland
, pp.
39
103
.
53.
Nakka
,
Y. K.
, and
Chung
,
S.-J.
,
2022
, “
Trajectory Optimization of Chance-Constrained Nonlinear Stochastic Systems for Motion Planning Under Uncertainty
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
203
222
.
54.
Rockafellar
,
R. T.
, and
Klastorin
,
T.
,
2007
, “Coherent Approaches to Risk in Optimization UnderUncertainty,”
OR Tools and Applications: Glimpses of Future Technologies
,
INFORMS
,
Maryland, USA
, pp.
38
61
.
55.
Girardeau
,
P.
,
2010
, “
A Comparison of Sample-Based Stochastic Optimal Control Methods
,” arxiv:1002.1812.
56.
AlAshery
,
M. K.
, and
Qiao
,
W.
,
2018
, “
Risk Management for Optimal Wind Power Bidding in an Electricity Market: A Comparative Study
,”
North American Power Symposium
,
Fargo, ND
,
Sept. 9–11
, pp.
1
6
.
57.
Malikopoulos
,
A. A.
,
Maroulas
,
V.
, and
Xiong
,
J.
,
2015
, “
A Multiobjective Optimization Framework for Stochastic Control of Complex Systems
,”
American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
4263
4268
.
58.
Hernández-Lerma
,
O.
,
Lasserre
,
J. B.
,
Karatzas
,
I.
, and
Yor
,
M.
,
1996
, “Infinite-Horizon Discounted-Cost Problems,”
Discrete-Time Markov Control Processes
,
Springer
,
New York
, pp.
43
73
.
59.
Sethi
,
S. P.
,
Suo
,
W.
,
Taksar
,
M. I.
, and
Yan
,
H.
,
1998
, “
Optimal Production Planning in a Multi-product Stochastic Manufacturing System With Long-Run Average Cost
,”
Discrete Event Dyn. Syst.
,
8
(
1
), pp.
37
54
.
60.
Malikopoulos
,
A. A.
,
2015
, “
A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
2
), pp.
440
450
.
61.
Nagy
,
Z. K.
, and
Braatz
,
R. D.
,
2004
, “
Open-Loop and Closed-Loop Robust Optimal Control of Batch Processes Using Distributional and Worst-Case Analysis
,”
J. Process Contr.
,
14
(
4
), pp.
411
422
.
62.
Li
,
X.
,
Nair
,
P. B.
,
Zhang
,
Z.
,
Gao
,
L.
, and
Gao
,
C.
,
2014
, “
Aircraft Robust Trajectory Optimization Using Nonintrusive Polynomial Chaos
,”
J. Aircraft
,
51
(
5
), pp.
1592
1603
.
63.
Shi
,
Y.-T.
,
Xiang
,
X.
,
Wang
,
L.
,
Zhang
,
Y.
, and
Sun
,
D.-H.
,
2018
, “
Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System
,”
Energies
,
11
(
1
), p.
193
.
64.
Von Neumann
,
J.
, and
Morgenstern
,
O.
,
1944
,
Theory of Games and Economic Behavior
,
Princeton University Press
,
Princeton, NJ
.
65.
Razo
,
M.
, and
Gao
,
S.
,
2013
, “
A Rank-Dependent Expected Utility Model for Strategic Route Choice With Stated Preference Data
,”
Transp. Res. Part C. Emerg. Technol.
,
27
, pp.
117
130
.
66.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
,
2010
, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
,
132
(
1
),
011005
.
67.
Zhang
,
X.
,
Kamgarpour
,
M.
,
Georghiou
,
A.
,
Goulart
,
P.
, and
Lygeros
,
J.
,
2017
, “
Robust Optimal Control With Adjustable Uncertainty Sets
,”
Automatica
,
75
, pp.
249
259
.
68.
Liu
,
B.
,
2002
, “
Toward Fuzzy Optimization Without Mathematical Ambiguity
,”
Fuzzy Optim. Decis. Making
,
1
(
1
), pp.
43
63
.
69.
Shen
,
X.
,
Duran
,
S. K.
, and
Sachdeva
,
G.
,
2022
, “
A Possibilistic Risk Assessment Framework for Unmanned Electric Vehicles With Predict of Uncertainty Traffic
,”
Front. Energy Res.
,
10
(
888298
).
70.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
,
2004
, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Safe.
,
85
(
1–3
), pp.
281
294
.
71.
Bae
,
H.-R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
An Approximation Approach for Uncertainty Quantification Using Evidence Theory
,”
Reliab. Eng. Syst. Safe.
,
86
(
3
), pp.
215
225
.
72.
Schöbel
,
A.
,
2014
, “
Generalized Light Robustness and the Trade-Off Between Robustness and Nominal Quality
,”
Math. Meth. Oper. Res.
,
80
(
2
), pp.
161
191
.
73.
Mattson
,
C.
, and
Messac
,
A.
,
2003
, “
Handling Equality Constraints in Robust Design Optimization
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
,
Apr. 7–10
, p.
1780
.
74.
Rangavajhala
,
S.
,
Mullur
,
A.
, and
Messac
,
A.
,
2007
, “
The Challenge of Equality Constraints in Robust Design Optimization: Examination and New Approach
,”
Struct. Multidiscip. Optim.
,
34
(
5
), pp.
381
401
.
75.
Xiu
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
76.
Oksendal
,
B.
,
2013
,
Stochastic Differential Equations: An Introduction With Applications
,
Springer
,
New York
.
77.
Bayram
,
M.
,
Partal
,
T.
, and
Buyukoz
,
G. O.
,
2018
, “
Numerical Methods for Simulation of Stochastic Differential Equations
,”
Adv. Differ. Equat.
,
2018
(
1
), pp.
1
10
.
78.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
(
3
), pp.
525
546
.
79.
Lakshmikantham
,
V.
, and
Mohapatra
,
R. N.
,
2003
,
Theory of Fuzzy Differential Equations and Inclusions
,
Taylor & Francis
,
New York
.
80.
Lew
,
T.
,
Bonalli
,
R.
, and
Pavone
,
M.
,
2020
, “
Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization
,”
European Control Conference
,
St. Petersburg, Russia
,
May 12–15
, pp.
1871
1878
.
81.
Taguchi
,
G.
,
1986
,
Introduction to Quality Engineering: Designing Quality Into Products and Processes
,
Asian Productivity Organization
,
Tokyo
.
82.
Ide
,
J.
, and
Schöbel
,
A.
,
2016
, “
Robustness for Uncertain Multi-objective Optimization: A Survey and Analysis of Different Concepts
,”
OR Spectrum
,
38
(
1
), pp.
235
271
.
83.
Xun
,
Q.
,
Murgovski
,
N.
, and
Liu
,
Y.
,
2022
, “
Chance-Constrained Robust Co-Design Optimization for Fuel Cell Hybrid Electric Trucks
,”
Appl. Energy
,
320
, p.
119252
.
84.
Shapiro
,
A.
,
Nemirovski
,
A.
,
Jeyakumar
,
V.
, and
Rubonov
,
A.
,
2005
, “On Complexity of Stochastic Programming Problems,”
Continuous Optimization
,
Springer
,
New York
, pp.
111
146
.
85.
Hettich
,
R.
, and
Kortanek
,
K. O.
,
1993
, “
Semi-Infinite Programming: Theory, Methods, and Applications
,”
SIAM Rev.
,
35
(
3
), pp.
380
429
.
86.
Bryson
,
A. E.
, and
Ho
,
Y. -C.
,
1975
,
Applied Optimal Control
,
Taylor & Francis
,
New York
.
87.
Diehl
,
M.
,
Gerhard
,
J.
,
Marquardt
,
W.
, and
Mönnigmann
,
M.
,
2008
, “
Numerical Solution Approaches for Robust Nonlinear Optimal Control Problems
,”
Comput. Chem. Eng.
,
32
(
6
), pp.
1279
1292
.
88.
Soni
,
H.
, and
Patel
,
K.
,
2012
, “
Optimal Pricing and Inventory Policies for Non-Instantaneous Deteriorating Items With Permissible Delay in Payment: Fuzzy Expected Value Model
,”
Int. J. Ind. Eng. Comput.
,
3
(
3
), pp.
281
300
.
89.
Zhang
,
N.
,
Hu
,
Z.
,
Han
,
X.
,
Zhang
,
J.
, and
Zhou
,
Y.
,
2015
, “
A Fuzzy Chance-Constrained Program for Unit Commitment Problem Considering Demand Response, Electric Vehicle and Wind Power
,”
Int. J. Electr. Power Energy Syst.
,
65
, pp.
201
209
.
90.
Rahal
,
S.
, and
Li
,
Z.
,
2021
, “
Norm Induced Polyhedral Uncertainty Sets for Robust Linear Optimization
,”
Optim. Eng.
,
23
, pp.
1765
1801
.
91.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
Princeton University Press
,
Princeton, NJ
.
92.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
,
1998
, “
Robust Convex Optimization
,”
Math. Oper. Res.
,
23
(
4
), pp.
769
805
.
93.
Kim
,
Y.
,
Zhang
,
X.
,
Guanetti
,
J.
, and
Borrelli
,
F.
,
2018
, “
Robust Model Predictive Control With Adjustable Uncertainty Sets
,”
IEEE Conference on Decision and Control
,
Miami, FL
,
Dec. 17–19
, pp.
5176
5181
.
94.
Wang
,
C.
,
Liu
,
F.
,
Wang
,
J.
,
Qiu
,
F.
,
Wei
,
W.
,
Mei
,
S.
, and
Lei
,
S.
,
2016
, “
Robust Risk-Constrained Unit Commitment With Large-Scale Wind Generation: An Adjustable Uncertainty Set Approach
,”
IEEE Trans. Power Syst.
,
32
(
1
), pp.
723
733
.
95.
Malak
,
R.
,
Baxter
,
B.
, and
Hsiao
,
C.
,
2015
, “
A Decision-Based Perspective on Assessing System Robustness
,”
Procedia Comput. Sci.
,
44
, pp.
619
629
.
96.
Baron
,
D. P.
,
1977
, “
On the Utility Theoretic Foundations of Mean-Variance Analysis
,”
J. Finan.
,
32
(
5
), pp.
1683
1697
.
97.
Bigelow
,
J. P.
,
1993
, “
Consistency of Mean-Variance Analysis and Expected Utility Analysis: A Complete Characterization
,”
Econ. Lett.
,
43
(
2
), pp.
187
192
.
98.
Basak
,
S.
, and
Chabakauri
,
G.
,
2010
, “
Dynamic Mean-Variance Asset Allocation
,”
Rev. Finan. Stud.
,
23
(
8
), pp.
2970
3016
.
99.
Briggs
,
R. A.
, and
Zalta
,
E. N.
,
2019
,
The Stanford Encyclopedia of Philosophy
, Fall 2019 edn.,
Metaphysics Research Lab, Stanford University
,
Stanford, CA
.
100.
Paraskevopoulos
,
P. N.
,
2017
,
Modern Control Engineering
,
CRC Press
,
Boca Raton, FL
.
101.
Seiler
,
P.
,
Packard
,
A.
, and
Gahinet
,
P.
,
2020
, “
An Introduction to Disk Margins [Lecture Notes]
,”
IEEE Contr. Syst. Mag.
,
40
(
5
), pp.
78
95
.
102.
Yong
,
J.
,
2020
, “
Stochastic Optimal Control-A Concise Introduction
,”
Math. Contr. Relat. Fields
,
12
(
4
), pp.
1039
1136
.
103.
Cottrill
,
G. C.
,
2012
, “
Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms
,” Ph.D. thesis,
Air Force Institute of Technology
.
104.
Sun
,
J.
, and
Yong
,
J.
,
2020
,
Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems
,
Springer
,
Switzerland
.
105.
Chen
,
S.
, and
Yong
,
J.
,
2001
, “
Stochastic Linear Quadratic Optimal Control Problems
,”
Appl. Math. Optim.
,
43
(
1
), pp.
21
45
.
106.
Fisher
,
J.
, and
Bhattacharya
,
R.
,
2011
, “
Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos
,”
ASME J. Dyn. Syst. Meas. Contr.
,
133
(
1
), p.
014501
.
107.
Boutselis
,
G. I.
,
De La Torre
,
G.
, and
Theodorou
,
E. A.
,
2016
, “
Stochastic Optimal Control Using Polynomial Chaos Variational Integrators
,”
American Control Conference
,
Boston, MA
,
July 6–8
, pp.
6586
6591
.
108.
Bemporad
,
A.
, and
Morari
,
M.
,
1999
,
Robust Model Predictive Control: A Survey
,
Springer
,
Cham, Switzerland
.
109.
Mesbah
,
A.
,
2016
, “
Stochastic Model Predictive Control: An Overview and Perspectives for Future Research
,”
IEEE Contr. Syst. Mag.
,
36
(
6
), pp.
30
44
.
You do not currently have access to this content.