Abstract

A mature digital twin (DT) is supposed to enable engineers to accurately evaluate the real-time reliability of a complex engineering system. However, in practical engineering problems, reliability analysis (RA) often involves nonlinear, implicit, and computationally expensive relationships between the performance and uncertain parameters, which makes it very challenging to conduct time-dependent reliability analysis (TRA) instantly and accurately for a DT. This article proposes a new surrogate-based time-dependent reliability analysis (STRA) method for a DT, specifically making the following three contributions: (i) the number of discrete time nodes used to convert the stochastic processes into a series of random variables in the expansion optimal linear estimation process is dynamically selected, leading to a good tradeoff between the accurate representation of stochastic processes and fast reliability evaluation; (ii) based on Voronoi partition sampling and a modified leave-one-out cross-validation procedure, multiple sensitive subdomains in each iteration are selected simultaneously to guide adaptive sampling at the insufficiently fitted vicinity of the limit state function, which helps accurately calculate the probability of failure and reduce the number of design-of-experiment (DoE) samples; and (iii) an improved weighted expected feasibility function is proposed considering the importance of each sample and the sensitivity of the subdomain to which it belongs, which further improves the sampling efficiency. The proposed STRA method is applied to the TRA of a numerical model, a corroded beam structure, and a cutterhead of a tunnel boring machine to demonstrate its effectiveness for realistic DT applications.

References

1.
Grieves
,
M. W.
,
2005
, “
Product Lifecycle Management: The New Paradigm for Enterprises
,”
Int. J. Prod. Dev.
,
2
(
1–2
), pp.
71
84
.
2.
Miller
,
A. M.
,
Alvarez
,
R.
, and
Hartman
,
N.
,
2018
, “
Towards an Extended Model-Based Definition for the Digital Twin
,”
Comput. Aided Des. Appl.
,
15
(
6
), pp.
880
891
.
3.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A. Y.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
4.
Hu
,
W.
,
He
,
Y.
,
Liu
,
Z.
,
Tan
,
J.
,
Yang
,
M.
, and
Chen
,
J.
,
2021
, “
Toward a Digital Twin: Time Series Prediction Based on a Hybrid Ensemble Empirical Mode Decomposition and BO-LSTM Neural Networks
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051705
.
5.
Hu
,
W.
,
Zhang
,
T.
,
Deng
,
X.
,
Liu
,
Z.
, and
Tan
,
J.
,
2021
, “
Digital Twin: A State-of-the-art Review of its Enabling Technologies, Applications and Challenges
,”
J. Intell. Manuf. Spec. Equip.
,
2
(
1
), pp.
1
34
.
6.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: a way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
7.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
8.
Yang
,
J. N.
, and
Shinozuka
,
M.
,
1972
, “
On the First-Excursion Probability in Stationary Narrow-Band Random Vibration, II
,”
ASME J. Appl. Mech.
,
136
(
3
), pp.
765
785
.
9.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-dependent Reliability Analysis with Joint Upcrossing Rates
,”
Struct. Multidiscipl. Optim.
,
48
(
5
), pp.
893
907
.
10.
Jiang
,
C.
,
Wei
,
X. P.
,
Huang
,
Z. L.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
.
11.
Romero
,
V. J.
,
Swiler
,
L. P.
, and
Giunta
,
A. A.
,
2004
, “
Construction of Response Surfaces Based on Progressive-Lattice-Sampling Experimental Designs with Application to Uncertainty Propagation
,”
Struct. Saf.
,
26
(
2
), pp.
201
219
.
12.
Zhao
,
W.
,
Fan
,
F.
, and
Wang
,
W.
,
2017
, “
Non-Linear Partial Least Squares Response Surface Method for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
161
, pp.
69
77
.
13.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probabilistic Eng. Mech.
,
25
(
2
), pp.
183
197
.
14.
Dai
,
H.
,
Zhang
,
H.
,
Wang
,
W.
, and
Xue
,
G.
,
2012
, “
Structural Reliability Assessment by Local Approximation of Limit State Functions Using Adaptive Markov Chain Simulation and Support Vector Regression
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
27
(
9
), pp.
676
686
.
15.
Matheron
,
G.
,
1973
, “
The Intrinsic Random Functions and Their Applications
,”
Adv. Appl. Probab.
,
5
(
3
), pp.
439
468
.
16.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
17.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
18.
Li
,
J.
,
Chen
,
J.
, and
Fan
,
W.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
2
), pp.
112
131
.
19.
Wang
,
Z.
, and
Chen
,
W.
,
2017
, “
Confidence-Based Adaptive Extreme Response Surface for Time-Variant Reliability Analysis Under Random Excitation
,”
Struct. Saf.
,
64
, pp.
76
86
.
20.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-dependent System Reliability Analysis with Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.
21.
Li
,
J.
,
Chen
,
J.
,
Wei
,
J.
,
Zhang
,
X.
, and
Han
,
B.
,
2019
, “
Developing an Instantaneous Response Surface Method t-IRS for Time-Dependent Reliability Analysis
,”
Acta Mech. Solida Sin.
,
32
(
4
), pp.
446
462
.
22.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.
,
66
(
1
), pp.
141
144
.
23.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, p.
154798
.
24.
Hu
,
W.
,
Fang
,
J.
,
Zhang
,
T.
,
Liu
,
Z.
, and
Tan
,
J.
,
2023
, “
A New Quantitative Digital Twin Maturity Model for High-End Equipment
,”
J. Manuf. Syst.
,
66
, pp.
248
259
.
25.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
26.
Xiao
,
S.
,
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2020
, “
Reliability Analysis with Stratified Importance Sampling Based on Adaptive Kriging
,”
Reliab. Eng. Syst. Saf.
,
197
, p.
106852
.
27.
Yang
,
S.
,
Jo
,
H.
,
Lee
,
K.
, and
Lee
,
I.
,
2022
, “
Expected System Improvement (ESI): A new Learning Function for System Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108449
.
28.
Jiang
,
C.
,
Qiu
,
H.
,
Yang
,
Z.
,
Chen
,
L.
,
Gao
,
L.
, and
Li
,
P.
,
2019
, “
A General Failure-Pursuing Sampling Framework for Surrogate-Based Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
47
59
.
29.
Peng
,
X.
,
Ye
,
T.
,
Hu
,
W.
,
Li
,
J.
,
Liu
,
Z.
, and
Jiang
,
S.
,
2022
, “
Construction of Adaptive Kriging Metamodel for Failure Probability Estimation Considering the Uncertainties of Distribution Parameters
,”
Probabilistic Eng. Mech.
,
70
, p.
103353
.
30.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Wang
,
D.
,
Yang
,
Z.
, and
Chen
,
L.
,
2020
, “
Real-time Estimation Error-Guided Active Learning Kriging Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Model.
,
77
, pp.
82
98
.
31.
Song
,
Z.
,
Zhang
,
H.
,
Zhang
,
L.
,
Liu
,
Z.
, and
Zhu
,
P.
,
2022
, “
An Estimation Variance Reduction-Guided Adaptive Kriging Method for Efficient Time-Variant Structural Reliability Analysis
,”
Mech. Syst. Signal Process.
,
178
, p.
109322
.
32.
Li
,
C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
33.
Xu
,
S.
,
Liu
,
H.
,
Wang
,
X.
, and
Jiang
,
X.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071009
.
34.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—a Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
35.
Crombecq
,
K.
,
Gorissen
,
D.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2011
, “
A Novel Hybrid Sequential Design Strategy for Global Surrogate Modeling of Computer Experiments
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1948
1974
.
36.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-Validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
581
605
.
37.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
38.
Wang
,
Z.
, and
Chen
,
W.
,
2016
, “
Time-variant Reliability Assessment Through Equivalent Stochastic Process Transformation
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
166
175
.
39.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
40.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
41.
Chen
,
R.
,
Liu
,
Y.
,
Tan
,
L.
, and
Zhou
,
B.
,
2012
, “
Research on Calculation of Thrust and Cutter Head Torque on Shield in Complex Strata
,”
Chin. J. Undergr. Space Eng.
,
8
(
1
), pp.
26
32
.
You do not currently have access to this content.