Abstract

Surrogate model provides a promising way to reasonably approximate complex underlying relationships between system parameters. However, the expensive modeling cost, especially in large problem sizes, hinders its applications in practical problems. To overcome this issue, with the advantages of the multi-fidelity surrogate (MFS) model, this paper proposes a single-fidelity surrogate model with a hierarchical structure, named nonlinearity integrated correlation mapping surrogate (NI-CMS) model. The NI-CMS model first establishes the low-fidelity model to capture the underlying landscape of the true function, and then, based on the idea of MFS model, the established low-fidelity model is corrected by minimizing the mean square error to ensure prediction accuracy. Especially, a novel MFS model (named NI-MFS), is constructed to enhance the stability of the proposed NI-CMS model. More specifically, a nonlinear scaling term, which assumes the linear combination of the projected low-fidelity predictions in a high-dimensional space can reach the high-fidelity level, is introduced to assist the traditional scaling term. The performances of the proposed model are evaluated through a series of numerical test functions. In addition, a surrogate-based digital twin of an XY compliant parallel manipulator is used to validate the practical performance of the proposed model. The results show that compared with the existing models, the NI-CMS model provides a higher performance under the condition of a small sample set, illustrating the promising potential of this surrogate modeling technique.

References

1.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Kevin Tucker
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
2.
Kudela
,
J.
, and
Matousek
,
R.
,
2022
, “
Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review
,”
Soft Comput.
,
26
(
24
), pp.
13709
13733
.
3.
Tang
,
Y.
,
Long
,
T.
,
Shi
,
R.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Sequential Radial Basis Function-Based Optimization Method Using Virtual Sample Generation
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111701
.
4.
Wang
,
Y.
,
Hao
,
P.
,
Guo
,
Z.
,
Liu
,
D.
, and
Gao
,
Q.
,
2020
, “
Reliability-Based Design Optimization of Complex Problems With Multiple Design Points Via Narrowed Search Region
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061702
.
5.
Bostanabad
,
R.
,
Chan
,
Y. C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
6.
Yang
,
Z.
,
Li
,
X.
,
Brinson
,
L. C.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
7.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
.
8.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
9.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041006
.
10.
Giselle Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.
11.
Li
,
K.
,
Liu
,
Y.
,
Wang
,
S.
, and
Song
,
X.
,
2021
, “
Multifidelity Data Fusion Based on Gradient-Enhanced Surrogate Modeling Method
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121704
.
12.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
965
981
.
13.
Zhou
,
Q.
,
Wu
,
Y.
,
Guo
,
Z.
,
Hu
,
J.
, and
Jin
,
P.
,
2020
, “
A Generalized Hierarchical Co-Kriging Model for Multi-fidelity Data Fusion
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
1885
1904
.
14.
Hao
,
P.
,
Feng
,
S.
,
Li
,
Y.
,
Wang
,
B.
, and
Chen
,
H.
,
2020
, “
Adaptive Infill Sampling Criterion for Multi-fidelity Gradient-Enhanced Kriging Model
,”
Struct. Multidiscip. Optim.
,
62
(
1
), pp.
353
373
.
15.
Yang
,
H.
,
Hong
,
S. H.
, and
Wang
,
Y.
,
2022
, “
A Sequential Multi-fidelity Surrogate-Based Optimization Methodology Based on Expected Improvement Reduction
,”
Struct. Multidiscip. Optim.
,
65
(
5
), pp.
1
17
.
16.
Lin
,
Q.
,
Zhou
,
Q.
,
Hu
,
J.
,
Cheng
,
Y.
, and
Hu
,
Z.
,
2022
, “
A Sequential Sampling Approach for Multi-Fidelity Surrogate Modeling-Based Robust Design Optimization
,”
ASME J. Mech. Des.
,
144
(
11
), p.
111703
.
17.
Lee
,
M.
,
Jung
,
Y.
,
Choi
,
J.
, and
Lee
,
I.
,
2022
, “
A Reanalysis-Based Multi-Fidelity (RBMF) Surrogate Framework for Efficient Structural Optimization
,”
Comput. Struct.
,
273
, p.
106895
.
18.
Yang
,
S.
, and
Yee
,
K.
,
2022
, “
Design Rule Extraction Using Multi-fidelity Surrogate Model for Unmanned Combat Aerial Vehicles
,”
J. Aircr.
,
59
(
4
), pp.
977
991
.
19.
Lobo do Vale
,
J.
,
Sohst
,
M.
,
Crawford
,
C.
,
Suleman
,
A.
,
Potter
,
G.
, and
Banerjee
,
S.
,
2022
, “
On the Multi-Fidelity Approach in Surrogate-Based Multidisciplinary Design Optimisation of High-Aspect-Ratio Wing Aircraft
,”
Aeronaut. J.
, pp.
1
22
.
20.
Li
,
K.
,
Fu
,
T.
,
Zhang
,
T.
, and
Song
,
X.
,
2022
, “
CMS: A Novel Surrogate Model With Hierarchical Structure Based on Correlation Mapping
,”
Eng. Comput.
,
38
(
5
), pp.
4589
4604
.
21.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
, Matrix Analysis.
22.
Yu
,
S.
,
Tranchevent
,
L.-C.
,
De Moor
,
B.
, and
Moreau
,
Y.
,
2011
, “Rayleigh Quotient-Type Problems in Machine Learning,”
Kernel-Based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining
,
Springer
,
Berlin/Heidelberg
, pp.
27
37
.
23.
Toal
,
D. J. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.
24.
Shi
,
M.
,
Lv
,
L.
,
Sun
,
W.
, and
Song
,
X.
,
2020
, “
A Multi-Fidelity Surrogate Model Based on Support Vector Regression
,”
Struct. Multidiscip. Optim.
,
61
(
6
), pp.
2363
2375
.
25.
Benamara
,
T.
,
Breitkopf
,
P.
,
Lepot
,
I.
,
Sainvitu
,
C.
, and
Villon
,
P.
,
2017
, “
Multi-fidelity POD Surrogate-Assisted Optimization: Concept and Aero-Design Study
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1387
1412
.
26.
Hu
,
J.
,
Zhang
,
L.
,
Lin
,
Q.
,
Cheng
,
M.
,
Zhou
,
Q.
, and
Liu
,
H.
,
2021
, “
A Conservative Multi-fidelity Surrogate Model-Based Robust Optimization Method for Simulation-Based Optimization
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
2525
2551
.
27.
Wang
,
S.
,
Liu
,
Y.
,
Zhou
,
Q.
,
Yuan
,
Y.
,
Lv
,
L.
, and
Song
,
X.
,
2021
, “
A Multi-Fidelity Surrogate Model Based on Moving Least Squares: Fusing Different Fidelity Data for Engineering Design
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3637
3652
.
28.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
29.
Ren
,
B.
,
Pueyo
,
L.
,
Zhu
,
G. B.
,
Debes
,
J.
, and
Duchêne
,
G.
,
2018
, “
Non-Negative Matrix Factorization: Robust Extraction of Extended Structures
,”
Astrophys. J.
,
852
(
2
), p.
104
.
30.
Dhillon
,
I. S.
, and
Sra
,
S.
,
2005
, “
Generalized Nonnegative Matrix Approximations with Bregman Divergences
,”
Adv. Neural Inf. Process. Syst.
, pp.
283
290
.
31.
Ren
,
B.
,
Pueyo
,
L.
,
Chen
,
C.
,
Choquet
,
É
,
Debes
,
J. H.
,
Duchêne
,
G.
,
Ménard
,
F.
, and
Perrin
,
M. D.
,
2020
, “
Using Data Imputation for Signal Separation in High-Contrast Imaging
,”
Astrophys. J.
,
892
(
2
), p.
74
.
32.
Bao
,
Y.
,
Fang
,
H.
, and
Zhang
,
J.
,
2014
, “
TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation
,”
Proc. Natl. Conf. Artif. Intell.
,
28
(
1
), pp.
2
8
.
33.
Murrell
,
B.
,
Weighill
,
T.
,
Buys
,
J.
,
Ketteringham
,
R.
,
Moola
,
S.
,
Benade
,
G.
,
Buisson
,
L.
,
Kaliski
,
D.
,
Hands
,
T.
, and
Scheffler
,
K.
,
2011
, “
Non-Negative Matrix Factorization for Learning Alignment-Specific Models of Protein Evolution
,”
PLoS One
,
6
(
12
), p.
e28898
.
34.
Lopes
,
N.
, and
Ribeiro
,
B.
,
2015
,
Machine Learning for Adaptive Many- Core Machines—A Practical Approach
,
Springer International Publishing
.
35.
Paatero
,
P.
, and
Tapper
,
U.
,
1994
, “
Positive Matrix Factorization: A Non-Negative Factor Model With Optimal Utilization of Error Estimates of Data Values
,”
Environmetrics
,
5
(
2
), pp.
111
126
.
36.
Zhou
,
Y.
,
2021
, “
Linear Constrained Rayleigh Quotient Optimization: Theory and Algorithms
,”
CSIAM Trans. Appl. Math.
,
2
(
2
), pp.
195
262
.
37.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1029
1050
.
38.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N. D.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-Fidelity Modelling
,”
Proc. Math. Phys. Eng. Sci.
,
473
(
2198
), p.
20160751
.
39.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.
40.
Viana
,
F. A. C.
,
2010
,
SURROGATES Toolbox User’s Guide
.
41.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
42.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-Fidelity Scale Factor Improves Bayesian Multi-fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
399
414
.
43.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
44.
Zhu
,
J.
,
Hao
,
G.
,
Li
,
S.
,
Yu
,
S.
, and
Kong
,
X.
,
2021
, “
A Mirror-Symmetrical XY Compliant Parallel Manipulator With Improved Performances Without Increasing the Footprint
,”
Proc. ASME Des. Eng. Tech. Conf.
,
8A
(
2021
), pp.
1
13
.
45.
B
,
S. P.
, and
Bharanidaran
,
R.
,
2020
, “
Design and Testing of a Compliant Mechanism-Based XYθ Stage for Micro/Nanopositioning
,”
Aust. J. Mech. Eng.
, pp.
1
10
.
46.
Hiemstra
,
D. B.
,
Parmar
,
G.
, and
Awtar
,
S.
,
2014
, “
Performance Tradeoffs Posed by Moving Magnet Actuators in Flexure-Based Nanopositioning
,”
IEEE/ASME Trans. Mech.
,
19
(
1
), pp.
201
212
.
47.
Tian
,
Y.
,
Ma
,
Y.
,
Wang
,
F.
,
Lu
,
K.
, and
Zhang
,
D.
,
2020
, “
A Novel XYZ Micro/Nano Positioner With an Amplifier Based on L-Shape Levers and Half-Bridge Structure
,”
Sens. Actuators A: Phys.
,
302
, p.
111777
.
48.
Sun
,
X.
,
Chen
,
W.
,
Zhou
,
R.
,
Zhang
,
J.
, and
Chen
,
W.
,
2011
, “
Design of Compliant Parallel Mechanism for Nanoimprint Lithography
,”
Proceedings of 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA 2011)
,
Beijing, China
,
June 21–23
, pp.
200
205
.
49.
Teo
,
T. J.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2014
, “
A Large Deflection and High Payload Flexure-Based Parallel Manipulator for UV Nanoimprint Lithography: Part I. Modeling and Analyses
,”
Precis. Eng.
,
38
(
4
), pp.
861
871
.
50.
Parvari Rad
,
F.
,
Vertechy
,
R.
,
Berselli
,
G.
, and
Parenti-Castelli
,
V.
,
2018
, “Compliant Serial 3R Chain With Spherical Flexures,”
Advances in Robot Kinematics 2016
,
J
Lenarčič
, and
J-P
Merlet
, eds.,
Springer International Publishing
,
Cham
, pp.
11
21
.
51.
Seidemann
,
V.
,
Bütefisch
,
S.
, and
Büttgenbach
,
S.
,
2002
, “
Fabrication and Investigation of In-Plane Compliant SU8 Structures for MEMS and Their Application to Micro Valves and Micro Grippers
,”
Sens. Actuators A: Phys.
,
97–98
, pp.
457
461
.
52.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
.
53.
Cecil
,
J.
,
Vasquez
,
D.
, and
Powell
,
D.
,
2005
, “
A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
819
828
.
54.
Herpe
,
X.
,
Walker
,
R.
,
Dunnigan
,
M.
, and
Kong
,
X.
,
2018
, “
On a Simplified Nonlinear Analytical Model for the Characterisation and Design Optimisation of a Compliant XY Micro-Motion Stage
,”
Robot. Comput. Integr. Manuf.
,
49
(
December 2016
), pp.
66
76
.
55.
Zhang
,
Z.
,
Yan
,
P.
, and
Hao
,
G.
,
2017
, “
A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing
,”
Engineering
,
3
(
5
), pp.
708
715
.
You do not currently have access to this content.