Abstract

Origami structures are often attractive for a broad range of applications in engineering, design, and robotics because of their useful characteristics such as reconfigurable geometry, tunable stiffness, and energy absorption capacity. Although a range of algorithms and software is available for origami design and folding analysis, they are generally isolated from other computational tools. To contribute to filling this research gap, we propose a unified parametric origami design workflow based on grasshopper combined with a multi-objective optimization process. To this end, first, a parametric model for a ring-shaped fourfold origami structure, called the Miura-oRing metastructure, is developed based on appropriate geometric parameters. Its nonlinear folding process is then simulated according to geometric compatibility conditions and given constraints. Simultaneously, modal analysis is iteratively performed, using SAP2000 through C# scripts, to obtain relationships for the structural configuration, mass, and stiffness of the origami structure. Finally, an inverse design process based on a fitting cylindrical annulus is carried out using Octopus, considering the spatial fit, mass, and stiffness of the Miura-oRing. A comparison is made between the obtained results and those of the origami simulator and the physical models to validate the performance of the proposed method. After balancing the three objectives of inverse design, a recommended range of parameters is prescribed for the Miura-oRing for a given set of dimensions. This study provides a workflow that integrates geometry, kinematics, and structural performance, enabling the design of origami structures with desirable geometric, kinematic, and structural characteristics.

References

1.
Liu
,
Q.
,
Shen
,
H.
,
Wu
,
Y. H.
,
Xia
,
Z. C.
,
Fang
,
J. G.
, and
Li
,
Q.
,
2018
, “
Crash Responses Under Multiple Impacts and Residual Properties of CFRP and Aluminum Tubes
,”
Compos. Struct.
,
194
, pp.
87
103
.
2.
Chen
,
Y.
,
Shi
,
P.
,
Bai
,
Y.
,
Li
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Engineered Origami Crease Perforations for Optimal Mechanical Performance and Fatigue Life
,”
Thin Walled Struct.
,
185
, p.
110572
.
3.
Wo
,
Z.
,
Raneses
,
J. M.
, and
Filipov
,
E. T.
,
2022
, “
Locking Zipper-Coupled Origami Tubes for Deployable Energy Absorption
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041007
.
4.
Banerjee
,
H.
,
Li
,
T. K.
,
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Origami-Layer-Jamming Deployable Surgical Retractor With Variable Stiffness and Tactile Sensing
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031010
.
5.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
6.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.
7.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
8.
Bernardes
,
E.
, and
Viollet
,
S.
,
2022
, “
Design of an Origami Bendy Straw for Robotic Multistable Structures
,”
ASME J. Mech. Des.
,
144
(
3
), p.
033301
.
9.
Sun
,
Y.
,
Ye
,
W.
,
Chen
,
Y.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Geometric Design Classification of Kirigami-Inspired Metastructures and Metamaterials
,”
Structures
,
33
, pp.
3633
3643
.
10.
Chen
,
Y.
,
Xu
,
R.
,
Lu
,
C.
,
Liu
,
K.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Multi-stability of the Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
, p.
108196
.
11.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson’s Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.
12.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
13.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
14.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
A Framework for the Symmetric Generalisation of the Miura-Ori
,”
Int. J. Space Struct.
,
30
(
2
), pp.
141
152
.
15.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
.
16.
Miura
,
K.
, and
Sakamaki
,
M.
,
1977
, “
A New Method of Map Folding
,”
Map J. Jpn. Cartogr. Assoc.
,
15
(
4
), pp.
7
13
.
17.
Miura
,
K.
, and
Furuya
,
H.
,
1988
, “
Adaptive Structure Concept for Future Space Applications
,”
AIAA J.
,
26
(
8
), pp.
995
1002
.
18.
Miura
,
K.
, “
A Note on Intrinsic Geometry of Origami
,”
Proc. International Meeting on Origami Science and Technology
,
Ferrara, Italy
,
Dec. 6–7
, pp.
91
102
.
19.
Miura
,
K.
,
1994
, “Map Fold a La Miura Style, Its Physical Characteristics and Application to the Space Science,”
Research Pattern Formation
,
R.
Takaki
, ed.,
KTK Scientific Publishers
,
Tokyo, Japan
, pp.
77
90
.
20.
Miura
,
K.
, and
Lang
,
R. J.
, “
The Science of Miura-Ori: A Review
,”
Origami
,
4
, pp.
87
99
.
21.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J., Ser. C
,
45
(
1
), pp.
364
370
.
22.
Nojima
,
T.
,
2002
, “Origami Modeling of Functional Structures Based on Organic Patterns,”
Kyoto University
.
23.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Non-Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085002
.
24.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
25.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
.
26.
Hu
,
Y.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2021
, “
Constructing Rigid-Foldable Generalized Miura-Ori Tessellations for Curved Surfaces
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011017
.
27.
Hu
,
Y.
,
Liang
,
H.
, and
Duan
,
H.
,
2019
, “
Design of Cylindrical and Axisymmetric Origami Structures Based on Generalized Miura-Ori Cell
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051004
.
28.
Chen
,
Y.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Particle Swarm Optimization-Based Metaheuristic Design Generation of Non-Trivial Flat-Foldable Origami Tessellations With Degree-4 Vertices
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011703
.
29.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.
30.
Shende
,
S.
,
Gillman
,
A.
,
Yoo
,
D.
,
Buskohl
,
P.
, and
Vemaganti
,
K.
,
2021
, “
Bayesian Topology Optimization for Efficient Design of Origami Folding Structures
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
1907
1926
.
31.
Chen
,
Y.
,
Lu
,
C.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Data-Driven Design and Morphological Analysis of Conical Six-Fold Origami Structures
,”
Thin Walled Struct.
,
185
, p.
110626
.
32.
Mundilova
,
K.
,
2019
, “
On Mathematical Folding of Curved Crease Origami: Sliding Developables and Parametrizations of Folds Into Cylinders and Cones
,”
Comput. Aided Des.
,
115
, pp.
34
41
.
33.
Wonoto
,
N.
,
Baerlecken
,
D.
,
Gentry
,
R.
, and
Swarts
,
M.
,
2013
, “
Parametric Design and Structural Analysis of Deployable Origami Tessellation
,”
Comput. Aided Des. Appl.
,
10
(
6
), pp.
939
951
.
34.
Tabadkani
,
A.
,
Shoubi
,
M. V.
,
Soflaei
,
F.
, and
Banihashemi
,
S.
,
2019
, “
Integrated Parametric Design of Adaptive Facades for User’s Visual Comfort
,”
Autom. Constr.
,
106
, p.
102857
.
35.
Wang
,
H.
,
Zhao
,
D.
,
Jin
,
Y.
,
Wang
,
M.
, and
You
,
Z.
,
2018
, “
Unified Parametric Modeling of Origami-Based Tube
,”
Thin Walled Struct.
,
133
, pp.
226
234
.
36.
Sareh
,
P.
, and
Chen
,
Y.
,
2020
, “
Intrinsic Non-Flat-Foldability of Two-Tile DDC Surfaces Composed of Glide-Reflected Irregular Quadrilaterals
,”
Int. J. Mech. Sci.
,
185
, p.
105881
.
37.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Struct. Stab. Dyn.
,
12
(
6
), p.
1250054
.
38.
Vergauwen
,
A.
,
De Laet
,
L.
, and
De Temmerman
,
N.
,
2017
, “
Computational Modelling Methods for Pliable Structures Based on Curved-Line Folding
,”
Comput. Aided Des.
,
83
, pp.
51
63
.
39.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
.
40.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Variational Level Set Method for Topology Optimization of Origami Fold Patterns
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081702
.
41.
Tachi
,
T.
,
2020
, “
Freeform Origami
,” Tokyo, Japan, https://tsg.ne.jp/TT/software/index.html, Accessed December 2021.
42.
Ghassaei
,
A.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using GPU Computation
,”
Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 5–7
, vol. 4, pp.
1151
1166
.
43.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2015
, “
New Deployable Structures Based on an Elastic Origami Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021402
.
44.
Lu
,
C.
,
Chen
,
Y.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Algorithmic Spatial Form-Finding of Four-Fold Origami Structures Based on Mountain-Valley Assignments
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031001
.
45.
Chen
,
Y.
,
Lu
,
C.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Intelligent Computational Design of Scalene-Faceted Flat-Foldable Tessellations
,”
J. Comput. Des. Eng.
,
9
(
5
), pp.
1765
1774
.
46.
Chen
,
Y.
, and
Feng
,
J.
,
2016
, “
Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products
,”
J. Struct. Eng.
,
142
(
9
), p.
04016051
.
47.
Zhang
,
P.
,
Fan
,
W.
,
Chen
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Structural Symmetry Recognition in Planar Structures Using Convolutional Neural Networks
,”
Eng. Struct.
,
260
, p.
114227
.
48.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Rob.
,
3
(
22
), p.
eaah5228
.
49.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
The Spinning Cyclic ‘Miura-ORing’ for Mechanical Collision-Resilience
,”
Origami
,
7
(
3
), pp.
981
994
.
50.
Khidmat
,
R. P.
,
Fukuda
,
H.
,
Kustiani
,
Paramita
,
B.
,
Qingsong
,
M.
, and
Hariyadi
,
A.
,
2022
, “
Investigation Into the Daylight Performance of Expanded-Metal Shading Through Parametric Design and Multi-Objective Optimisation in Japan
,”
J. Build. Eng.
,
51
, p.
104241
.
51.
Tumbeva
,
M. D.
,
Wang
,
Y.
,
Sowar
,
M. M.
,
Dascanio
,
A. J.
, and
Thrall
,
A. P.
,
2016
, “
Quilt Pattern Inspired Engineering: Efficient Manufacturing of Shelter Topologies
,”
Autom. Constr.
,
63
, pp.
57
65
.
52.
Quaglia
,
C. P.
,
Yu
,
N.
,
Thrall
,
A. P.
, and
Paolucci
,
S.
,
2014
, “
Balancing Energy Efficiency and Structural Performance Through Multi-Objective Shape Optimization: Case Study of a Rapidly Deployable Origami-Inspired Shelter
,”
Energy Build.
,
82
, pp.
733
745
.
53.
Chen
,
Y.
,
Liang
,
J.
,
Shi
,
P.
,
Feng
,
J.
,
Sareh
,
P.
, and
Dai
,
J.
,
2023
, “
Inverse Design of Programmable Poisson's Ratio and In-Plane Stiffness for Generalized Four-Fold Origami
,”
Compos. Struct.
,
311
, p.
116789
.
54.
Toutou
,
A.
,
Fikry
,
M.
, and
Mohamed
,
W.
,
2018
, “
The Parametric Based Optimization Framework Daylighting and Energy Performance in Residential Buildings in Hot Arid Zone
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3595
3608
.
55.
Marzouk
,
M.
,
ElSharkawy
,
M.
, and
Eissa
,
A.
,
2020
, “
Optimizing Thermal and Visual Efficiency Using Parametric Configuration of Skylights in Heritage Buildings
,”
J. Build. Eng.
,
31
, p.
101385
.
56.
Bader
,
J.
, and
Zitzler
,
E.
,
2011
, “
HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
,”
Evol. Comput.
,
19
(
1
), pp.
45
76
.
57.
Auger
,
A.
,
Bader
,
J.
,
Brockhoff
,
D.
, and
Zitzler
,
E.
,
2012
, “
Hypervolume-Based Multiobjective Optimization: Theoretical Foundations and Practical Implications
,”
Theor. Comput. Sci.
,
425
, pp.
75
103
.
58.
Auger
,
A.
,
Bader
,
J.
,
Brockhoff
,
D.
, and
Zitzler
,
E.
,
2009
, “
Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point
,”
Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms
,
Orlando, FL
,
Jan. 9–11
, pp.
87
102
.
59.
Brockhoff
,
D.
,
Bader
,
J.
,
Thiele
,
L.
, and
Zitzler
,
E.
,
2013
, “
Directed Multiobjective Optimization Based on the Weighted Hypervolume Indicator
,”
J. Multi-Criteria Decis. Anal.
,
20
(
5–6
), pp.
291
317
.
60.
Tian
,
W.
,
2013
, “
A Review of Sensitivity Analysis Methods in Building Energy Analysis
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
411
419
.
61.
Christopher Frey
,
H.
, and
Patil
,
S. R.
,
2002
, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
,
22
(
3
), pp.
553
578
.
62.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “A Review on Global Sensitivity Analysis Methods,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
G.
Dellino
, and
C.
Meloni
, eds.,
Springer
,
Boston, MA
, pp.
101
122
.
63.
Iooss
,
B.
, and
Saltelli
,
A.
,
2017
, “Introduction to Sensitivity Analysis,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer
,
Cham
, pp.
1103
1122
.
You do not currently have access to this content.