Abstract

Emerging shared mobility systems are gaining popularity due to their significant economic and environmental benefits. In this paper, we present a network-based approach for predicting travel demand between stations (e.g., whether two stations have sufficient trips to form a strong connection) in shared mobility systems to support system design decisions. In particular, we answer the research question of whether local network information (e.g., the network neighboring station’s features of a station and its surrounding points of interest (POI), such as banks, schools, etc.) would influence the formation of a strong connection or not. If so, to what extent do such factors play a role? To answer this question, we propose using graph neural networks (GNNs), in which the concept of network embedding can capture and quantify the effect of local network structures. We compare the results with a regular artificial neural network (ANN) model that is agnostic to neighborhood information. This study is demonstrated using a real-world bike sharing system, the Divvy Bike in Chicago. We observe that the GNN prediction gains up to 8% higher performance than the ANN model. Our findings show that local network information is vital in the structure of a sharing mobility network, and the results generalize even when the network structure and density change significantly. With the GNN model, we show how it supports two crucial design decisions in bike sharing systems, i.e., where new stations should be added and how much capacity a station should have.

References

1.
Baxter
,
G.
, and
Sommerville
,
I.
,
2011
, “
Socio-Technical Systems: From Design Methods to Systems Engineering
,”
Interact. Comput.
,
23
(
1
), pp.
4
17
.
2.
Wang
,
W.
,
Chen
,
J.
,
Zhang
,
Y.
,
Gong
,
Z.
,
Kumar
,
N.
, and
Wei
,
W.
,
2021
, “
A Multi-Graph Convolutional Network Framework for Tourist Flow Prediction
,”
ACM Trans. Internet Technol.
,
21
(
4
), pp.
1
13
.
3.
Xiao
,
Y.
, and
Sha
,
Z.
,
2022
, “
Robust Design of Complex Socio-Technical Systems Against Seasonal Effects: A Network Motif-Based Approach
,”
Des. Sci.
,
8
, p.
e2
.
4.
Schuijbroek
,
J.
,
Hampshire
,
R. C.
, and
Van Hoeve
,
W.-J.
,
2017
, “
Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems
,”
Eur. J. Oper Res.
,
257
(
3
), pp.
992
1004
.
5.
Yi
,
P.
,
Huang
,
F.
, and
Peng
,
J.
,
2019
, “
A Rebalancing Strategy for the Imbalance Problem in Bike-Sharing Systems
,”
Energies
,
12
(
13
), p.
2578
.
6.
Duan
,
Y.
, and
Wu
,
J.
,
2019
, “
Optimizing Rebalance Scheme for Dock-Less Bike Sharing Systems With Adaptive User Incentive
,”
20th IEEE International Conference on Mobile Data Management (MDM)
,
Hong Kong, China
,
June 10–13
, IEEE, pp. 176–181.
7.
Fricker
,
C.
, and
Gast
,
N.
,
2016
, “
Incentives and Redistribution in Homogeneous Bike-Sharing Systems With Stations of Finite Capacity
,”
Euro J. Transp. Logist.
,
5
(
3
), pp.
261
291
.
8.
Çelebi
,
D.
,
Yörüsün
,
A.
, and
Işık
,
H.
,
2018
, “
Bicycle Sharing System Design With Capacity Allocations
,”
Transp. Res. Part B Methodol.
,
114
, pp.
86
98
.
9.
Lin
,
J.-R.
,
Yang
,
T.-H.
, and
Chang
,
Y.-C.
,
2013
, “
A Hub Location Inventory Model for Bicycle Sharing System Design: Formulation and Solution
,”
Comput. Ind. Eng.
,
65
(
1
), pp.
77
86
.
10.
Si
,
H.
,
Shi
,
J.-G.
,
Wu
,
G.
,
Chen
,
J.
, and
Zhao
,
X.
,
2019
, “
Mapping the Bike Sharing Research Published From 2010 to 2018: A Scientometric Review
,”
J. Cleaner Prod.
,
213
, pp.
415
427
.
11.
DeMaio
,
P.
,
2009
, “
Bike-Sharing: History, Impacts, Models of Provision, and Future
,”
J. Public Transp.
,
12
(
4
), pp.
41
56
.
12.
Borgnat
,
P.
,
Abry
,
P.
,
Flandrin
,
P.
,
Robardet
,
C.
,
Rouquier
,
J.-B.
, and
Fleury
,
E.
,
2011
, “
Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective
,”
Adv. Complex Syst.
,
14
(
3
), pp.
415
438
.
13.
Froehlich
,
J.
,
Neumann
,
J.
, and
Oliver
,
N.
,
2009
, “
Sensing and Predicting the Pulse of the City Through Shared Bicycling
,”
Proceedings of the 21st International Joint Conference on Artificial Intelligence
,
Pasadena, CA
,
July 11–17
, Vol. 9, pp.
1420
1426
.
14.
Kaltenbrunner
,
A.
,
Meza
,
R.
,
Grivolla
,
J.
,
Codina
,
J.
, and
Banchs
,
R.
,
2010
, “
Urban Cycles and Mobility Patterns: Exploring and Predicting Trends in a Bicycle-Based Public Transport System
,”
Pervasive Mob. Comput.
,
6
(
4
), pp.
455
466
.
15.
Yoon
,
J. W.
,
Pinelli
,
F.
, and
Calabrese
,
F.
,
2012
, “
Cityride: A Predictive Bike Sharing Journey Advisor
,”
2012 IEEE 13th International Conference on Mobile Data Management
,
Bengaluru, India
,
July 23–26
, IEEE, pp.
306
311
.
16.
Ashqar
,
H. I.
,
Elhenawy
,
M.
,
Rakha
,
H. A.
,
Almannaa
,
M.
, and
House
,
L.
,
2022
, “
Network and Station-Level Bike-Sharing System Prediction: A San Francisco Bay Area Case Study
,”
J. Intell. Transp. Syst.
,
26
(
5
), pp.
602
612
.
17.
Lin
,
L.
,
He
,
Z.
, and
Peeta
,
S.
,
2018
, “
Predicting Station-Level Hourly Demand in a Large-Scale Bike-Sharing Network: A Graph Convolutional Neural Network Approach
,”
Transp. Res. Part C: Emerg. Technol.
,
97
, pp.
258
276
.
18.
He
,
S.
, and
Shin
,
K. G.
,
2020
, “
Towards Fine-Grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems
,”
Proceedings of The Web Conference 2020
,
Taipei, Taiwan
,
Apr. 20–24
, pp.
88
98
.
19.
Liu
,
J.
,
Sun
,
L.
,
Li
,
Q.
,
Ming
,
J.
,
Liu
,
Y.
, and
Xiong
,
H.
,
2017
, “
Functional Zone Based Hierarchical Demand Prediction for Bike System Expansion
,”
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Halifax, NS, Canada
,
Aug. 13–17
, pp.
957
966
.
20.
Singhvi
,
D.
,
Singhvi
,
S.
,
Frazier
,
P.
,
Henderson
,
S. G.
,
O’Mahony
,
E.
,
Shmoys
,
D. B.
, and
Woodard
,
D. B.
,
2015
, “
Predicting Bike Usage for New York City’s Bike Sharing System
,”
AAAI Workshop: Computational Sustainability
,
Austin, TX
,
Jan. 26
.
21.
Tran
,
T. D.
, and
Ovtracht
,
N.
,
2015
, “
Modeling Bike Sharing System Using Built Environment Factors
,”
Procedia CIRP
,
30
, pp.
293
298
.
22.
Faghih-Imani
,
A.
,
Hampshire
,
R.
,
Marla
,
L.
, and
Eluru
,
N.
,
2017
, “
An Empirical Analysis of Bike Sharing Usage and Rebalancing: Evidence From Barcelona and Seville
,”
Transp. Res. Part A: Policy Practice
,
97
, pp.
177
191
.
23.
Chen
,
X.
, and
Jiang
,
H.
,
2020
, “
Detecting the Demand Changes of Bike Sharing: A Bayesian Hierarchical Approach
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
5
), pp.
3969
3984
.
24.
Gast
,
N.
,
Massonnet
,
G.
,
Reijsbergen
,
D.
, and
Tribastone
,
M.
,
2015
, “
Probabilistic Forecasts of Bike-Sharing Systems for Journey Planning
,”
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
,
Melbourne, Australia
,
Oct. 18–23
, pp.
703
712
.
25.
Jiang
,
W.
,
2022
, “
Bike Sharing Usage Prediction With Deep Learning: A Survey
,”
Neural Comput. Appl.
,
34
(
18
), pp.
15369
15385
.
26.
Zell
,
A.
,
1994
,
Simulation Neuronaler Netze
,
Addison-Wesley
,
Bonn, Germany
.
27.
Wu
,
F.
,
Hong
,
S.
,
Zhao
,
W.
,
Wang
,
X.
,
Shao
,
X.
,
Wang
,
X.
, and
Zheng
,
X.
,
2021
, “
Neural Networks With Improved Extreme Learning Machine for Demand Prediction of Bike-Sharing
,”
Mob. Netw. Appl.
,
26
(
5
), pp.
2035
2045
.
28.
Wang
,
B.
, and
Kim
,
I.
,
2018
, “
Short-Term Prediction for Bike-Sharing Service Using Machine Learning
,”
Transp. Res. Procedia
,
34
, pp.
171
178
.
29.
Chen
,
P.-C.
,
Hsieh
,
H.-Y.
,
Su
,
K.-W.
,
Sigalingging
,
X. K.
,
Chen
,
Y.-R.
, and
Leu
,
J.-S.
,
2020
, “
Predicting Station Level Demand in a Bike-Sharing System Using Recurrent Neural Networks
,”
IET Intell. Transp. Syst.
,
14
(
6
), pp.
554
561
.
30.
Lee
,
S.-H.
, and
Ku
,
H.-C.
,
2022
, “
A Dual Attention-Based Recurrent Neural Network for Short-Term Bike Sharing Usage Demand Prediction
,”
IEEE Trans. Intell. Transp. Syst.
,
24
(
4
), pp.
4621
4630
.
31.
Yang
,
H.
,
Xie
,
K.
,
Ozbay
,
K.
,
Ma
,
Y.
, and
Wang
,
Z.
,
2018
, “
Use of Deep Learning to Predict Daily Usage of Bike Sharing Systems
,”
Transp. Res. Rec.
,
2672
(
36
), pp.
92
102
.
32.
Li
,
X.
,
Xu
,
Y.
,
Zhang
,
X.
,
Shi
,
W.
,
Yue
,
Y.
, and
Li
,
Q.
,
2023
, “
Improving Short-Term Bike Sharing Demand Forecast Through an Irregular Convolutional Neural Network
,”
Transp. Res. Part C: Emerg. Technol.
,
147
, p.
103984
.
33.
Rathkopf
,
C.
,
2018
, “
Network Representation and Complex Systems
,”
Synthese
,
195
(
1
), pp.
55
78
.
34.
Cui
,
Y.
,
Ahmed
,
F.
,
Sha
,
Z.
,
Wang
,
L.
,
Fu
,
Y.
, and
Chen
,
W.
,
2020
, “
A Weighted Network Modeling Approach for Analyzing Product Competition
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 84003, American Society of Mechanical Engineers, p. V11AT11A036.
35.
Sha
,
Z.
, and
Panchal
,
J. H.
,
2016
, “
A Degree-Based Decision-Centric Model for Complex Networked Systems
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol. 50084, American Society of Mechanical Engineers, p. V01BT02A016.
36.
Barabási
,
A.-L.
,
2012
, “
The Network Takeover
,”
Nat. Phys.
,
8
(
1
), pp.
14
16
.
37.
Scarselli
,
F.
,
Gori
,
M.
,
Tsoi
,
A. C.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2008
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Netw.
,
20
(
1
), pp.
61
80
.
38.
Song
,
B.
,
McComb
,
C.
, and
Ahmed
,
F.
,
2022
, “
Assessing Machine Learnability of Image and Graph Representations for Drone Performance Prediction
,”
Proc. Des. Soc.
,
2
, pp.
1777
1786
.
39.
Ferrero
,
V.
,
DuPont
,
B.
,
Hassani
,
K.
, and
Grandi
,
D.
,
2022
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021406
.
40.
Ahmed
,
F.
,
Cui
,
Y.
,
Fu
,
Y.
, and
Chen
,
W.
,
2021
, “
A Graph Neural Network Approach for Product Relationship Prediction
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 85383, American Society of Mechanical Engineers, p. V03AT03A036.
41.
Liu
,
J.
,
Ong
,
G. P.
, and
Chen
,
X.
,
2020
, “
Graphsage-Based Traffic Speed Forecasting for Segment Network With Sparse Data
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
3
), pp.
1755
1766
.
42.
Zhang
,
J.
,
Chen
,
F.
,
Guo
,
Y.
, and
Li
,
X.
,
2020
, “
Multi-Graph Convolutional Network for Short-Term Passenger Flow Forecasting in Urban Rail Transit
,”
IET Intell. Transp. Syst.
,
14
(
10
), pp.
1210
1217
.
43.
Yoshida
,
A.
,
Yatsushiro
,
Y.
,
Hata
,
N.
,
Higurashi
,
T.
,
Tateiwa
,
N.
,
Wakamatsu
,
T.
,
Tanaka
,
A.
,
Nagamatsu
,
K.
, and
Fujisawa
,
K.
,
2019
, “
Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System
,”
2019 IEEE International Conference on Big Data (Big Data)
,
Los Angeles, CA
,
Dec. 9–12
, IEEE, pp.
1251
1258
.
44.
Zhou
,
J.
,
Cui
,
G.
,
Hu
,
S.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2020
, “
Graph Neural Networks: A Review of Methods and Applications
,”
AI Open
,
1
, pp.
57
81
.
45.
Hamilton
,
W. L.
,
Ying
,
R.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp. 1025–1035https://arxiv.org/abs/1706.02216.
46.
Perozzi
,
B.
,
Al-Rfou
,
R.
, and
Skiena
,
S.
,
2014
, “
Deepwalk: Online Learning of Social Representations
,”
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
New York, NY
,
Aug. 24–27
, pp.
701
710
.
47.
Tang
,
J.
,
Qu
,
M.
,
Wang
,
M.
,
Zhang
,
M.
,
Yan
,
J.
, and
Mei
,
Q.
,
2015
, “
Line: Large-Scale Information Network Embedding
,”
Proceedings of the 24th International Conference on World Wide Web
,
Florence, Italy
,
May 18–22
, pp.
1067
1077
.
48.
Chen
,
H.
,
Perozzi
,
B.
,
Al-Rfou
,
R.
, and
Skiena
,
S.
,
2018
, “
A Tutorial on Network Embeddings
,”
ArXiv
. https://arxiv.org/abs/1808.02590
49.
Xiao
,
Y.
, and
Sha
,
Z.
,
2020
, “
Towards Engineering Complex Socio-technical Systems Using Network Motifs: A Case Study on Bike-Sharing Systems
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 84003, American Society of Mechanical Engineers, p. V11AT11A045.
50.
Xiao
,
Y.
, and
Faez Ahmed
,
Z. S.
,
2022
, “
Travel Links Prediction in Shared Mobility Networks Using Graph Neural Network Models
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
51.
Wiki
,
O.
,
2022
, “Overpass Turbo—Openstreetmap Wiki,” Online, Accessed February 4, 2022.
52.
Yang
,
Y.
, and
Diez-Roux
,
A. V.
,
2012
, “
Walking Distance by Trip Purpose and Population Subgroups
,”
Am. J. Prev. Med.
,
43
(
1
), pp.
11
19
.
53.
Ahmed
,
F.
,
Cui
,
Y.
,
Fu
,
Y.
, and
Chen
,
W.
,
2022
, “
Product Competition Prediction in Engineering Design Using Graph Neural Networks
,”
ASME Open J. Eng.
,
1
(
5
), p.
011020
.
54.
Brownlee
,
J.
,
2020
,
Imbalanced Classification With Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning
,
Machine Learning Mastery
.
55.
Divvy_Bike
,
2020
, “Divvy System Data,” Last accessed February 8, 2022.
56.
Bengio
,
Y.
, and
Grandvalet
,
Y.
,
2004
, “
No Unbiased Estimator of the Variance of K-Fold Cross-Validation
,”
J. Mach. Learn. Res.
,
5
(
1532-4435
), pp.
1089
1105
.
57.
Nogueira
,
F.
,
2014
,
Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, https://github.com/fmfn/BayesianOptimizationhttps://github.com/fmfn/BayesianOptimization
.
You do not currently have access to this content.