Abstract

When solving the black-box dynamic optimization problem (BDOP) in the sophisticated dynamic system, the finite difference technique requires significant computational efforts on numerous expensive system simulations to provide approximate numerical Jacobian information for the gradient-based optimizer. To save computational budget, this work introduces a BDOP solving framework based on the right-hand side (RHS) function surrogate model (RHSFSM), in which the RHS derivative functions of the state equation are approximated by the surrogate models, and the Jacobian information is provided by inexpensive estimations of RHSFSM rather than the original time-consuming system evaluations. Meanwhile, the sampling strategies applicable to the construction of RHSFSM are classified into three categories: direct, indirect, and hybrid sampling strategy, and the properties of these strategies are analyzed and compared. Furthermore, to assist the RHSFSM-based BDOP solving framework search for the optimum efficiently, a novel dynamic hybrid sampling strategy is proposed to update RHSFSM sequentially. Finally, two dynamic optimization examples and a co-design example of a horizontal axis wind turbine illustrate that the RHSFSM-based BDOP solving framework integrated with the proposed dynamic hybrid sampling strategy not only solves the BDOP efficiently but also achieves the optimal solution robustly and reliably compared to other sampling strategies.

References

1.
Zhang
,
Y.
,
Li
,
S.
, and
Liao
,
L.
,
2019
, “
Near-Optimal Control of Nonlinear Dynamical Systems: A Brief Survey
,”
Annu. Rev. Control
,
47
, pp.
71
80
.
2.
Modares
,
H.
, and
Lewis
,
F. L.
,
2014
, “
Linear Quadratic Tracking Control of Partially-Unknown Continuous-Time Systems Using Reinforcement Learning
,”
IEEE Trans. Autom. Control
,
59
(
11
), pp.
3051
3056
.
3.
Zhang
,
Q.
,
Wu
,
Y. Z.
, and
Lu
,
L.
,
2022
, “
A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System
,”
Mathematics
,
10
(
18
), p.
3239
.
4.
Pirastehzad
,
A.
, and
Yazdanpanah
,
M. J.
,
2022
, “
A Successive Pseudospectral-Based Approximation of the Solution of Regulator Equations
,”
IEEE Trans. Autom. Control
,
67
(
4
), pp.
1760
1775
.
5.
Liu
,
P.
,
Li
,
G. D.
,
Liu
,
X. G.
,
Xiao
,
L.
,
Wang
,
Y. L.
,
Yang
,
C. H.
, and
Gui
,
W. H.
,
2018
, “
A Novel Non-Uniform Control Vector Parameterization Approach With Time Grid Refinement for Flight Level Tracking Optimal Control Problems
,”
ISA Trans.
,
73
, pp.
66
78
.
6.
Tang
,
X. J.
, and
Xu
,
H. Y.
,
2019
, “
Multiple-Interval Pseudospectral Approximation for Nonlinear Optimal Control Problems With Time-Varying Delays
,”
Appl. Math. Model.
,
68
, pp.
137
151
.
7.
Delkhosh
,
M.
, and
Cheraghian
,
H.
,
2022
, “
An Efficient Hybrid Method to Solve Nonlinear Differential Equations in Applied Sciences
,”
Comput. Appl. Math.
,
41
(
7
), p.
322
.
8.
Biegler
,
L. T.
, and
Zavala
,
V. M.
,
2009
, “
Large-Scale Nonlinear Programming Using IPOPT: An Integrating Framework for Enterprise-Wide Dynamic Optimization
,”
Comput. Chem. Eng.
,
33
(
3
), pp.
575
582
.
9.
Biegler
,
L. T.
,
2007
, “
An Overview of Simultaneous Strategies for Dynamic Optimization
,”
Chem. Eng. Process.
,
46
(
11
), pp.
1043
1053
.
10.
Serrancoli
,
G.
, and
Pamies-Vila
,
R.
,
2019
, “
Analysis of the Influence of Coordinate and Dynamic Formulations on Solving Biomechanical Optimal Control Problems
,”
Mech. Mach. Theory
,
142
, p.
103578
.
11.
Negrellos-Ortiz
,
I.
,
Flores-Tlacuahuac
,
A.
, and
Gutiérrez-Limón
,
M. A.
,
2018
, “
Dynamic Optimization of a Cryogenic Air Separation Unit Using a Derivative-Free Optimization Approach
,”
Comput. Chem. Eng.
,
109
, pp.
1
8
.
12.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2017
, “
Design of Dynamic Systems Using Surrogate Models of Derivative Functions
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101402
.
13.
Zhang
,
L. G.
,
Lu
,
Z. Z.
, and
Wang
,
P.
,
2015
, “
Efficient Structural Reliability Analysis Method Based on Advanced Kriging Model
,”
Appl. Math. Model.
,
39
(
2
), pp.
781
793
.
14.
Zhao
,
H. L.
,
Yue
,
Z. F.
,
Liu
,
Y. S.
,
Gao
,
Z. Z.
, and
Zhang
,
Y. S.
,
2015
, “
An Efficient Reliability Method Combining Adaptive Importance Sampling and Kriging Metamodel
,”
Appl. Math. Model.
,
39
(
7
), pp.
1853
1866
.
15.
Napier
,
N.
,
Sriraman
,
S.
,
Tran
,
H. T.
, and
James
,
K. A.
,
2020
, “
An Artificial Neural Network Approach for Generating High-Resolution Designs From Low-Resolution Input in Topology Optimization
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011402
.
16.
Zhang
,
Q.
,
Wu
,
Y. Z.
,
Lu
,
L.
, and
Qiao
,
P.
,
2022
, “
An Adaptive Dendrite-HDMR Metamodeling Technique for High-Dimensional Problems
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081701
.
17.
Tang
,
Y.
,
Long
,
T.
,
Shi
,
R.
,
Wu
,
Y.
, and
Wang
,
G.
,
2020
, “
Sequential Radial Basis Function-Based Optimization Method Using Virtual Sample Generation
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111701
.
18.
Smola
,
A.
, and
Vapnik
,
V.
,
1997
, “
Support Vector Regression Machines
,”
Adv. Neural Inf. Process. Syst.
,
9
, pp.
155
161
.
19.
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2012
, “
Fuzzy Parametric Uncertainty Analysis of Linear Dynamical Systems: A Surrogate Modeling Approach
,”
Mech. Syst. Signal Proc.
,
32
, pp.
5
17
.
20.
Shokry
,
A.
, and
Espuña
,
A.
,
2014
, “
Sequential Dynamic Optimization of Complex Nonlinear Processes Based on Kriging Surrogate Models
,”
2nd International Conference on System-Integrated Intelligence: Challenges for Product and Production Engineering
,
Bremen, Germany
,
July 2–4
, pp.
376
387
.
21.
Wang
,
Y. B.
, and
Scott
,
A. B.
,
2014
, “
Co-Design of Nonlinear Control Systems With Bounded Control Inputs
,”
Proceeding of the 11th World Congress on Intelligent Control and Automation
,
Shenyang, China
,
June 29–July 4
, pp.
3035
3039
.
22.
Qiao
,
P.
,
Wu
,
Y.
,
Ding
,
J.
, and
Zhang
,
Q.
,
2021
, “
A New Sequential Sampling Method of Surrogate Models for Design and Optimization of Dynamic Systems
,”
Mech. Mach. Theory
,
158
, p.
104248
.
23.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aeosp. Sci.
,
45
(
1
), pp.
50
79
.
24.
Jin
,
R. C.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
, Vol. 2, pp.
539
548
.
25.
dos Santos
,
M. I. R.
, and
dos Santos
,
P. M. R.
,
2008
, “
Sequential Experimental Designs for Nonlinear Regression Metamodels in Simulation
,”
Simul. Model. Pract. Theory
,
16
(
9
), pp.
1365
1378
.
26.
Kitayama
,
S.
,
Arakawa
,
M.
, and
Yamazaki
,
K.
,
2011
, “
Sequential Approximate Optimization Using Radial Basis Function Network for Engineering Optimization
,”
Optim. Eng.
,
12
(
4
), pp.
535
557
.
27.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Glob. Optim.
,
21
(
4
), pp.
345
383
.
28.
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Guo
,
W.
,
2018
, “
Efficient Reliability Analysis Based on Adaptive Sequential Sampling Design and Cross-Validation
,”
Appl. Math. Model.
,
58
, pp.
404
420
.
29.
Beck
,
J.
, and
Guillas
,
S.
,
2016
, “
Sequential Design With Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model
,”
SIAM-ASA J. Uncertain. Quantif.
,
4
(
1
), pp.
739
766
.
30.
Eason
,
J.
, and
Cremaschi
,
S.
,
2014
, “
Adaptive Sequential Sampling for Surrogate Model Generation With Artificial Neural Networks
,”
Comput. Chem. Eng.
,
68
, pp.
220
232
.
31.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch K-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
32.
Wei
,
X.
,
Wu
,
Y. Z.
, and
Chen
,
L. P.
,
2012
, “
A New Sequential Optimal Sampling Method for Radial Basis Functions
,”
Appl. Math. Comput.
,
218
(
19
), pp.
9635
9646
.
33.
Wu
,
J.
,
2020
, “
A New Sequential Space-Filling Sampling Strategy for Elementary Effects-Based Screening Method
,”
Appl. Math. Model.
,
83
, pp.
419
437
.
34.
Zhu
,
P.
,
Shi
,
L.
,
Yang
,
R. J.
, and
Lin
,
S. P.
,
2015
, “
A New Sampling-Based RBDO Method via Score Function With Reweighting Scheme and Application to Vehicle Designs
,”
Appl. Math. Model.
,
39
(
15
), pp.
4243
4256
.
35.
Liu
,
Y.
,
Li
,
K. P.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X. G.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-Fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
36.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
37.
Liu
,
H. T.
,
Xu
,
S. L.
,
Chen
,
X. D.
,
Wang
,
X. F.
, and
Ma
,
Q. C.
,
2017
, “
Constrained Global Optimization via a Direct-Type Constraint-Handling Technique and an Adaptive Metamodeling Strategy
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
155
177
.
38.
Wang
,
L. Q.
,
Shan
,
S. Q.
, and
Wang
,
G. G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optimiz.
,
36
(
4
), pp.
419
438
.
39.
Lefebvre
,
T.
,
De Belie
,
F.
, and
Crevecoeur
,
G.
,
2018
, “
A Trajectory-Based Sampling Strategy for Sequentially Refined Metamodel Management of Metamodel-Based Dynamic Optimization in Mechatronics
,”
Optim. Control Appl. Methods
,
39
(
5
), pp.
1786
1801
.
40.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, 2nd ed.,
SIAM Press
,
Philadelphia, PA
.
41.
Meng
,
Z.
,
Zhang
,
D. Q.
,
Liu
,
Z. T.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
.
42.
Liu
,
X.
,
Wu
,
Y. Z.
,
Wang
,
B. X.
,
Ding
,
J. W.
, and
Jie
,
H. X.
,
2017
, “
An Adaptive Local Range Sampling Method for Reliability-Based Design Optimization Using Support Vector Machine and Kriging Model
,”
Struct. Multidiscip. Optim.
,
55
(
6
), pp.
2285
2304
.
43.
Allison
,
J. T.
,
Guo
,
T. H.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
44.
Murtagh
,
F.
, and
Contreras
,
P.
,
2012
, “
Algorithms for Hierarchical Clustering: An Overview
,”
Wiley Interdiscip. Rev.-Data Mining Knowl. Discov.
,
2
(
1
), pp.
86
97
.
45.
Luus
,
R.
,
2019
,
Iterative Dynamic Programming
,
Press: Chapman & Hall
,
London, UK
.
46.
Otter
,
M.
, and
Tuerk
,
S.
,
1988
,
DFVLR Models 1 and 2 of the Manutec r3 Robot
,
Institut für Dynamik der Flugsysteme Press
,
Oberpfaffenhofen, Germany
.
47.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
15
27
.
48.
Qiao
,
P.
,
Wu
,
Y. Z.
, and
Ding
,
J. W.
,
2020
, “
Optimal Control of a Black-Box System Based on Surrogate Models by Spatial Adaptive Partitioning Method
,”
ISA Trans.
,
100
, pp.
63
73
.
You do not currently have access to this content.