Abstract

It is well known that the computational cost of classic topology optimization (TO) methods increases rapidly with the size of the design problem because of the high-dimensional numerical simulation required at each iteration. Recently, the technical route of replacing the TO process with artificial neural network (ANN) models has gained popularity. These ANN models, once trained, can rapidly produce an optimized design solution for a given design specification. However, the complex mapping relationship between design specifications and corresponding optimized structures presents challenges in the construction of neural networks with good generalizability. In this paper, we propose a new design framework that uses deep learning techniques to accelerate the TO process. Specifically, we present an efficient topology optimization (ETO) framework in which structure update at each iteration is conducted on a coarse scale and a structure mapping neural network (SMapNN) is constructed to map the updated coarse structure to its corresponding fine structure. As such, fine-scale numerical simulations are replaced by coarse-scale simulations, thereby greatly reducing the computational cost. In addition, fragmentation and padding strategies are used to improve the trainability and adaptability of SMapNN, leading to a better generalizability. The efficiency and accuracy of the proposed ETO framework are verified using both benchmark and complex design tasks. It has been shown that with the SMapNN, TO designs of millions of elements can be completed within a few minutes on a personal computer.

References

1.
Rong
,
Y.
,
Zhao
,
Z. L.
,
Feng
,
X. Q.
, and
Xie
,
Y. M.
,
2022
, “
Structural Topology Optimization With an Adaptive Design Domain
,”
Comput. Method Appl. Mech. Eng.
,
389
, p.
114382
.
2.
Deng
,
H.
, and
To
,
A. C.
,
2022
, “
A Novel Mathematical Formulation for Density-Based Topology Optimization Method Considering Multi-axis Machining Constraint
,”
ASME J. Mech. Des.
,
144
(
6
), p.
061702
.
3.
Wang
,
Y.
,
Zhang
,
H.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2022
, “
Design of a Stiffened Space Membrane Structure Using Explicit Topology Optimization
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121701
.
4.
Yan
,
J.
,
Xiang
,
R.
,
Kamensky
,
D.
,
Tolley
,
M. T.
, and
Hwang
,
J. T.
,
2022
, “
Topology Optimization With Automated Derivative Computation for Multidisciplinary Design Problems
,”
Struct. Multidiscipl. Optim.
,
65
(
5
), pp.
1
20
.
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Method Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
6.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Method Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
7.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
8.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
9.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
1998
, “
Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048
.
10.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Multidiscipl. Optim.
,
8
(
1
), pp.
42
51
.
11.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Method Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
12.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
13.
Wang
,
D.
,
Xiang
,
C.
,
Peng
,
Y.
,
Chen
,
A.
,
Zhou
,
X.
, et al.
,
2022
, “
A deep convolutional neural network for topology optimization with perceptible generalization ability
,”
Eng. Optimiz.
,
54
(
6
), pp.
973
988
.
14.
Zheng
,
S.
,
He
,
Z.
, and
Liu
,
H.
,
2021
, “
Generating Three-Dimensional Structural Topologies Via a U-Net Convolutional Neural Network
,”
Thin Wall Struct.
,
159
, p.
107263
.
15.
Kallioras
,
N. A.
,
Kazakis
,
G.
, and
Lagaros
,
N. D.
,
2020
, “
Accelerated Topology Optimization by Means of Deep Learning
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1185
1212
.
16.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2019
, “
Neural Networks for Topology Optimization
,”
Russ. J. Numer. Anal. Math. Model.
,
34
(
4
), pp.
215
223
.
17.
Lin
,
Q.
,
Hong
,
J.
,
Liu
,
Z.
,
Li
,
B.
, and
Wang
,
J.
,
2018
, “
Investigation Into the Topology Optimization for Conductive Heat Transfer Based on Deep Learning Approach
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
103
109
.
18.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
,
3d Topology Optimization Using Convolutional Neural Networks
,” preprint arXiv:1808.07440.
19.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
20.
Ates
,
G. C.
, and
Gorguluarslan
,
R. M.
,
2021
, “
Two-Stage Convolutional Encoder–Decoder Network to Improve the Performance and Reliability of Deep Learning Models for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
1927
1950
.
21.
Li
,
B.
,
Huang
,
C.
,
Li
,
X.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
Non-iterative Structural Topology Optimization Using Deep Learning
,”
Comput. Aided Des.
,
115
, pp.
172
180
.
22.
Xue
,
L.
,
Liu
,
J.
,
Wen
,
G.
, and
Wang
,
H.
,
2021
, “
Efficient, High-Resolution Topology Optimization Method Based on Convolutional Neural Networks
,”
Front. Mech. Eng-PRC
,
16
(
1
), pp.
80
96
.
23.
Chi
,
H.
,
Zhang
,
Y.
,
Tang
,
T. L. E.
,
Mirabella
,
L.
,
Dalloro
,
L.
,
Song
,
L.
, and
Paulino
,
G. H.
,
2021
, “
Universal Machine Learning for Topology Optimization
,”
Comput. Method Appl. Mech. Eng.
,
375
, p.
112739
.
24.
Hoyer
,
S.
,
Sohl-Dickstein
,
J.
, and
Greydanus
,
S.
,
2019
, “
Neural Reparameterization Improves Structural Optimization
,” preprint arXiv:1909.04240.
25.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
TOuNN: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1135
1149
.
26.
Lee
,
S.
,
Kim
,
H.
,
Lieu
,
Q. X.
, and
Lee
,
J.
,
2020
, “
CNN-Based Image Recognition for Topology Optimization
,”
Knowl. Based Syst.
,
198
, p.
105887
.
27.
Tan
,
R. K.
,
Qian
,
C.
,
Li
,
K.
,
Xu
,
D.
, and
Ye
,
W.
,
2022
, “
An Adaptive and Scalable Artificial Neural Network-Based Model-Order-Reduction Method for Large-Scale Topology Optimization Designs
,”
Struct. Multidiscipl. Optim.
,
65
(
12
), p.
348
.
28.
Sigmund
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
29.
Shi
,
W.
,
Caballero
,
J.
,
Huszár
,
F.
,
Totz
,
J.
,
Aitken
,
A. P.
,
Bishop
,
R.
, and
Wang
,
Z.
,
2016
, “
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
1874
1883
.
30.
He
,
K.
,
Chen
,
X.
,
Xie
,
S.
,
Li
,
Y.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2022
, “
Masked Autoencoders Are Scalable Vision Learners
,”
n Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
.
31.
Bock
,
S.
, and
Weib
,
M.
,
2019
, “
A Proof of Local Convergence for the Adam Optimizer
,”
2019 International Joint Conference on Neural Networks
,
Budapest, Hungary
,
July 14–19
, pp.
1
8
.
32.
Behzadi
,
M. M.
, and
Ilies
,
H. T.
,
2021
, “
Real-Time Topology Optimization in 3D Via Deep Transfer Learning
,”
Comput. Aided Des.
,
135
, p.
103014
.
33.
Zeiler
,
M. D.
,
Krishnan
,
D.
,
Taylor
,
G. W.
, and
Fergus
,
R.
,
2010
, “
Deconvolutional Networks
,”
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
San Francisco, CA
,
June 13–18
, pp.
2528
2535
.
You do not currently have access to this content.