Abstract

Shape-morphing structures are beneficial for applications in aerospace, automotive, and architecture since they allow structures to adapt to changing environmental conditions. Finding structural configurations with intrinsic shape-morphing capabilities is, however, difficult due to the complexity of enabling and controlling target deformations while at the same time maintaining structural integrity. Existing solutions are often unstable, hard to fabricate, or limited to a single target state. Here, we show how lattice structures can be designed that morph from an initial state to one or multiple target states with a single kinematic degrees-of-freedom. Thus, the deformations of a structure can be fully controlled by controlling a single input node for every state. Since the structures are designed at the verge of kinematic determinacy, they become statically and kinematically determinate and hence load-carrying upon fixing the actuation node. As all deformations are described by inextensional mechanism modes, the kinematic and mechanical performance of the structures are decoupled and can be tuned individually. We further show that not only the target shape of a structure can be controlled, but also the kinematic path of a target node between its initial and its final position. The results are verified by fabricating the designs using multi-material 3D printing that enables direct fabrication of complex joints. Our work combines advantages of load-carrying lattice structures and distinct topological and geometric design to generate integrated kinematic solutions for a wide range of applications such as morphing wings, robotic grippers, and adaptive building facades.

References

1.
Lentink
,
D.
,
Müller
,
U. K.
,
Stamhuis
,
E. J.
,
De Kat
,
R.
,
Van Gestel
,
W.
,
Veldhuis
,
L. L. M.
,
Henningsson
,
P.
,
Hedenström
,
A.
,
Videler
,
J. J.
, and
Van Leeuwen
,
J. L.
,
2007
, “
How Swifts Control Their Glide Performance With Morphing Wings
,”
Nature
,
446
(
7139
), pp.
1082
1085
.
2.
Li
,
S.
, and
Wang
,
K. W.
,
2017
, “
Plant-Inspired Adaptive Structures and Materials for Morphing and Actuation: A Review
,”
Bioinspiration Biomimetics
,
12
(
1
), pp.
1
17
.
3.
Kim
,
W.
,
Byun
,
J.
,
Kim
,
J. K.
,
Choi
,
W. Y.
,
Jakobsen
,
K.
,
Jakobsen
,
J.
,
Lee
,
D. Y.
, and
Cho
,
K. J.
,
2019
, “
Bioinspired Dual-Morphing Stretchable Origami
,”
Sci. Robot.
,
4
(
36
), pp.
1
11
.
4.
Del Grosso
,
A. E.
, and
Basso
,
P.
,
2010
, “
Adaptive Building Skin Structures
,”
Smart Mater. Struct.
,
19
(
12
), p.
124011
.
5.
Khoo
,
C. K.
,
Salim
,
F.
, and
Burry
,
J.
,
2011
, “
Designing Architectural Morphing Skins With Elastic Modular Systems
,”
Int. J. Archit. Comput.
,
9
(
4
), pp.
397
419
.
6.
Fraternali
,
F.
,
De Chiara
,
E.
, and
Skelton
,
R. E.
,
2015
, “
On the Use of Tensegrity Structures for Kinetic Solar Facades of Smart Buildings
,”
Smart Mater. Struct.
,
24
(
10
), p.
105032
.
7.
Momeni
,
F.
,
Sabzpoushan
,
S.
,
Valizadeh
,
R.
,
Morad
,
M. R.
,
Liu
,
X.
, and
Ni
,
J.
,
2019
, “
Plant Leaf-Mimetic Smart Wind Turbine Blades by 4D Printing
,”
Renew. Energy
,
130
, pp.
329
351
.
8.
Pagitz
,
M.
, and
Bold
,
J.
,
2013
, “
Shape-Changing Shell-Like Structures
,”
Bioinspiration Biomimetics
,
8
(
1
), p.
016010
.
9.
Han
,
M. W.
,
Rodrigue
,
H.
,
Cho
,
S.
,
Song
,
S. H.
,
Wang
,
W.
,
Chu
,
W. S.
, and
Ahn
,
S. H.
,
2016
, “
Woven Type Smart Soft Composite for Soft Morphing Car Spoiler
,”
Compos. Part B Eng.
,
86
, pp.
285
298
.
10.
Vasista
,
S.
,
Riemenschneider
,
J.
, and
Monner
,
H. P.
,
2015
, “
Design and Testing of a Compliant Mechanism-Based Demonstrator for a Droop-Nose Morphing Device
,”
Proceedings of the 23rd AIAA/AHS Adaptive Structure Conference
,
Kissimmee, FL
,
Jan. 5–9
, pp.
1
15
.
11.
Molinari
,
G.
,
Arrieta
,
A. F.
, and
Ermanni
,
P.
,
2014
, “
Aero-Structural Optimization of Three-Dimensional Adaptive Wings With Embedded Smart Actuators
,”
AIAA J.
,
52
(
9
), pp.
1940
1951
.
12.
Baker
,
D.
, and
Friswell
,
M. I.
,
2009
, “
Determinate Structures for Wing Camber Control
,”
Smart Mater. Struct.
,
18
(
3
), p.
035014
.
13.
Lumpe
,
T. S.
, and
Shea
,
K.
,
2021
, “
Computational Design of 3D-Printed Active Lattice Structures for Reversible Shape Morphing
,”
J. Mater. Res
,
36
, pp.
3642
3655
.
14.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2017
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Robot.
,
4
(
1
), pp.
33
48
.
15.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
.
16.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, pp.
1
34
.
17.
Pikul
,
J. H.
,
Li
,
S.
,
Bai
,
H.
,
Hanlon
,
R. T.
,
Cohen
,
I.
, and
Shepherd
,
R. F.
,
2017
, “
Stretchable Surfaces With Programmable 3D Texture Morphing for Synthetic Camouflaging Skins
,”
Science
,
358
(
6360
), pp.
210
214
.
18.
Freudenstein
,
F.
, and
Dobrjanskyj
,
L.
,
1966
, “On a theory for the type synthesis of mechanisms,”
Applied Mechanics
,
H.
Görtler
, ed.,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
420
428
.
19.
Erdman
,
A. G.
,
1995
, “
Computer-Aided Mechanism Design: Now and the Future
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
93
100
.
20.
Tischler
,
C. R.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
1995
, “
Kinematic Chains for Robot Hands—I. Orderly Number-Synthesis
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1193
1215
.
21.
Kong
,
F. G.
,
Li
,
Q.
, and
Zhang
,
W. J.
,
1999
, “
An Artificial Neural Network Approach to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
34
(
2
), pp.
271
283
.
22.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
23.
Katoh
,
N.
, and
Tanigawa
,
S.
,
2009
, “On the Infinitesimal Rigidity of Bar-and-Slider Frameworks,”
Algorithms and Computation
,
Springer
,
Berlin/Heidelberg
, pp.
524
533
.
24.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscip. Optim.
,
27
(
4
), pp.
295
299
.
25.
Liu
,
Y.
, and
McPhee
,
J.
,
2005
, “
Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
910
916
.
26.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1520
1545
.
27.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number of Synthesis of Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
110
118
.
28.
Ohsaki
,
M.
,
Kanno
,
Y.
, and
Tsuda
,
S.
,
2014
, “
Linear Programming Approach to Design of Spatial Link Mechanism With Partially Rigid Joints
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
945
956
.
29.
Minnaar
,
R. J.
,
Tortorelli
,
D. A.
, and
Snyman
,
J. A.
,
2001
, “
On Nonassembly in the Optimal Dimensional Synthesis of Planar Mechanisms
,”
Struct. Multidiscip. Optim.
,
21
(
5
), pp.
345
354
.
30.
Collard
,
J. F.
, and
Gosselin
,
C.
,
2011
, “
Optimal Synthesis of a Planar Reactionless Three-Degree-of-Freedom Parallel Mechanism
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041009
.
31.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
32.
Hansen
,
J. M.
,
2002
, “
Synthesis of Mechanisms Using Time-Varying Dimensions
,”
Multibody Syst. Dyn.
,
7
(
1
), pp.
127
144
.
33.
Kawamoto
,
A.
,
2005
, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1557
1574
.
34.
Ohsaki
,
M.
,
Tsuda
,
S.
, and
Miyazu
,
Y.
,
2016
, “
Design of Linkage Mechanisms of Partially Rigid Frames Using Limit Analysis With Quadratic Yield Functions
,”
Int. J. Solids Struct.
,
88–89
, pp.
68
78
.
35.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2009
, “
Generation of Link Mechanism by Shape-Topology Optimization of Trusses Considering Geometrical Nonlinearity
,”
J. Comput. Sci. Technol.
,
3
(
1
), pp.
46
53
.
36.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2013
, “
Topological and Dimensional Synthesis of Planar Linkages for Multiple Kinematic Tasks
,”
Multibody Syst. Dyn.
,
29
(
2
), pp.
189
211
.
37.
Stolpe
,
M.
, and
Kawamoto
,
A.
,
2005
, “
Design of Planar Articulated Mechanisms Using Branch and Bound
,”
Math. Program.
,
103
(
2
), pp.
357
397
.
38.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
39.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids Struct.
,
30
(
21
), pp.
3025
3035
.
40.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46
), pp.
7003
7027
.
41.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
42.
Audet
,
C.
,
Le Digabel
,
S.
,
Tribes
,
C.
, and
Rochon Montplaisir
,
V.
,
2011
, The NOMAD Project, https://www.gerad.ca/nomad/.
43.
Rueden
,
C. T.
,
Schindelin
,
J.
,
Hiner
,
M. C.
,
DeZonia
,
B. E.
,
Walter
,
A. E.
,
Arena
,
E. T.
, and
Eliceiri
,
K. W.
,
2017
, “
ImageJ2: ImageJ for the Next Generation of Scientific Image Data
,”
BMC Bioinform.
,
18
(
529
), pp.
1
26
.
44.
Wang
,
M. Y.
,
2009
, “
Mechanical and Geometric Advantages in Compliant Mechanism Optimization
,”
Front. Mech. Eng. China
,
4
(
3
), pp.
229
241
.
45.
Sigmund
,
O.
,
1996
, “Some Inverse Problems in Topology Design of Materials and Mechanisms,”
IUTAM Symposium on Optimization of Mechanical Systems. Solid Mechanics and its Applications
, Vol.
43
,
D.
Bestle
, and
W.
Schiehlen
, eds.,
Springer
,
Dordrecht
.
46.
Eberhard
,
P.
, and
Sedlaczek
,
K.
,
2009
, “Grid-Based Topology Optimization of Rigid Body Mechanisms,”
Advanced Design of Mechanical Systems: From Analysis to Optimization
, Vol.
511
,
J. A. C.
Ambrósio
, and
P.
Eberhard
, eds.,
Springer
,
Vienna
, pp.
303
315
.
47.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
48.
Symons
,
D. D.
,
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2005
, “
Actuation of the Kagome Double-Layer Grid. Part 1: Prediction of Performance of the Perfect Structure
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1855
1874
.
49.
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
91
101
.
You do not currently have access to this content.