Abstract

A discrete beam transfer matrix method is introduced to enhance the existing approaches for the static and dynamic compliance solutions of curved-axis flexure hinges with variable curvatures and nonuniform profiles. An idea of discretizing curved-axis flexure hinges as a series of constant beam segments parallel to the centroidal axis is developed. As a result, only a concise beam transfer matrix with decoupled longitudinal and transverse components is needed to establish the compliance model. A step-by-step modeling procedure with simple formulas is provided as well qualifying for curved-axis and folded hinges. With this modeling idea, the small-deflection compliance matrix in the common sense of statics and particularly in a viewpoint of frequency-dependent dynamics can be simultaneously obtained. A typical curved-axis flexure hinge available in the literature is analyzed and compared as a study case. In addition, the static and dynamic design for a compliant guiding mechanism composed of folded flexure hinges is efficiently implemented with the presented method.

References

1.
Venkiteswaran
,
V. K.
, and
Su
,
H. J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
.
2.
Ye
,
T.
,
Ling
,
J.
, and
Kang
,
X.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
3.
Weisbord
,
L.
, and
Paros
,
J.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
27
(
3
), pp.
151
157
.
4.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.
5.
Lobontiu
,
N.
,
Paine
,
J. S.
,
O’Malley
,
E.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(
3
), pp.
183
192
.
6.
Linß
,
S.
,
Schorr
,
P.
, and
Zentner
,
L.
,
2017
, “
General Design Equations for the Rotational Stiffness, Maximal Angular Deflection and Rotational Precision of Various Notch Flexure Hinges
,”
Mech. Sci.
,
8
(
1
), pp.
29
49
.
7.
Wei
,
H.
,
Yang
,
J.
,
Wu
,
F.
,
Niu
,
X.
, and
Shirinzadeh
,
B.
,
2022
, “
Analytical Modelling and Experiments for Hybrid Multiaxis Flexure Hinges
,”
Precis. Eng.
,
76
(
2
), pp.
294
304
.
8.
Chen
,
G.
,
Shao
,
X.
, and
Huang
,
X.
,
2008
, “
A New Generalized Model for Elliptical Arc Flexure Hinges
,”
Rev. Sci. Instrum.
,
79
(
9
), p.
095103
.
9.
Wang
,
R.
,
Zhou
,
X.
,
Zhu
,
Z.
, and
Liu
,
Q.
,
2015
, “
Development of a Novel Type of Hybrid Non-Symmetric Flexure Hinges
,”
Rev. Sci. Instrum.
,
86
(
8
), p.
085003
.
10.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Closed-Form Compliance Equations of Filleted V-Shaped Flexure Hinges for Compliant Mechanism Design
,”
Precis. Eng.
,
34
(
3
), pp.
408
418
.
11.
Li
,
Q.
,
Pan
,
C.
, and
Xu
,
X.
,
2013
, “
Closed-Form Compliance Equations for Power-Function-Shaped Flexure Hinge Based on Unit-Load Method
,”
Precis. Eng.
,
37
(
1
), pp.
135
145
.
12.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
13.
Liang
,
J.
,
Li
,
R.
,
Bai
,
S.
,
Li
,
Q.
,
Fengping
,
N.
, and
Shuhua
,
K.
,
2019
, “
Compliance and Fatigue Life Analysis of U-Shaped Flexure Hinge
,”
Mechanika
,
25
(
6
), pp.
501
510
.
14.
Wang
,
R.
,
Zhou
,
X.
, and
Zhu
,
Z.
,
2013
, “
Development of a Novel Sort of Exponent-Sine-Shaped Flexure Hinges
,”
Rev. Sci. Instrum.
,
84
(
9
), p.
095008
.
15.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2017
, “
Design and Analysis of a Multi-Notched Flexure Hinge for Compliant Mechanisms
,”
Precis Eng
,
48
(
2
), pp.
292
304
.
16.
Lin
,
R.
,
Zhang
,
X.
,
Long
,
X.
, and
Fatikow
,
S.
,
2013
, “
Hybrid Flexure Hinges
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085004
.
17.
Vallance
,
R. R.
,
Haghighian
,
B.
, and
Marsh
,
E. R.
,
2008
, “
A Unified Geometric Model for Designing Elastic Pivots
,”
Precis. Eng.
,
32
(
4
), pp.
278
288
.
18.
Wu
,
J.
,
Zhang
,
Y.
,
Cai
,
S.
, and
Cui
,
J.
,
2018
, “
Modeling and Analysis of Conical-Shaped Notch Flexure Hinges Based on NURBS
,”
Mech. Mach. Theor.
,
128
(
10
), pp.
560
568
.
19.
Pan
,
A. J.
,
Wu
,
B. J.
,
Zhang
,
C. Y.
,
Wang
,
D. H.
, and
Tan
,
E. J.
,
2021
, “
Design and Analyze of Flexure Hinges Based on Triply Periodic Minimal Surface Lattice
,”
Precis Eng
,
68
(
2
), pp.
338
350
.
20.
Kong
,
J.
,
Huang
,
Z.
,
Xian
,
X.
,
Wang
,
Y.
, and
Yu
,
P.
,
2020
, “
Generalized Model for Conic-V-Shaped Flexure Hinges
,”
Sci. Prog.
,
103
(
4
), p.
0036850420981211
.
21.
Farhadi
,
M. D.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2015
, “
A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
.
22.
Shaw
,
L. A.
,
Chizari
,
S.
,
Dotson
,
M.
, and
Prum
,
R. O.
,
2018
, “
Compliant Rolling-Contact Architected Materials for Shape Reconfigurability
,”
Nat. Commun.
,
9
(
1
), pp.
1
12
.
23.
Dwarshuis
,
K.
,
Aarts
,
R.
,
Ellenbroek
,
M.
, and
Brouwer
,
D.
,
2022
, “
Efficient Computation of Large Deformation of Spatial Flexure-Based Mechanisms in Design Optimizations
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021011
.
24.
Xu
,
Z.
,
Sun
,
W.
,
Li
,
X.
,
Huang
,
H.
, and
Dong
,
J.
,
2022
, “
A Stick-Slip Piezoelectric Actuator With High Assembly Interchangeability
,”
Int. J. Mech. Sci.
,
233
(
21
), p.
107662
.
25.
Nguyen
,
D. N.
,
Dang
,
M. P.
,
Dixit
,
S.
, and
Dao
,
T.-P.
,
2022
, “
A Design Approach of Bonding Head Guiding Platform for Die to Wafer Hybrid Bonding Application Using Compliant Mechanism
,”
Int. J. Interact. Des. Manuf.
,
16
(
3
), pp.
1
12
.
26.
Dang
,
M. P.
,
Le
,
H. G.
,
Van
,
M. N.
,
Chau
,
N. L.
, and
Dao
,
T.-P.
,
2022
, “
Modeling and Optimization for a New Compliant 2-dof Stage for Locating Biomaterial Samples by an Efficient Approach of a Kinetostatic Analysis-Based Method and Neural Network Algorithm
,”
Comput. Intell. Neurosci.
,
2022
(
4
), p.
6709464
.
27.
Liu
,
H.
,
Zhao
,
X.
,
Liu
,
H.
, and
Yang
,
J.
,
2022
, “
Magnetostrictive Biomechanical Energy Harvester With a Hybrid Force Amplifier
,”
Int. J. Mech. Sci.
,
233
(21), p.
107652
.
28.
Lobontiu
,
N.
,
Wight-Crask
,
J.
, and
Kawagley
,
C.
,
2019
, “
Straight-Axis Folded Flexure Hinges: In-Plane Elastic Response
,”
Precis. Eng.
,
57
(
3
), pp.
54
63
.
29.
Lobontiu
,
N.
,
2015
, “
Planar Flexible Hinges With Curvilinear-Axis Segments for Mechanisms of in-Plane and Out-of-Plane Operation
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012302
.
30.
Lobontiu
,
N.
,
2014
, “
In-Plane Compliances of Planar Flexure Hinges With Serially Connected Straight- and Circular-Axis Segments
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122301
.
31.
Hsiao
,
F.-Z.
, and
Lin
,
T.-W.
,
2001
, “
Analysis of a Novel Flexure Hinge With Three Degrees of Freedom
,”
Rev. Sci. Instrum.
,
72
(
2
), pp.
1565
1573
.
32.
Shusheng
,
B.
,
Shanshan
,
Z.
, and
Xiaofeng
,
Z.
,
2010
, “
Dimensionless Design Graphs for Three Types of Annulus-Shaped Flexure Hinges
,”
Precis. Eng.
,
34
(
3
), pp.
659
666
.
33.
Wang
,
N.
,
Zhang
,
Z.
, and
Zhang
,
X.
,
2019
, “
Stiffness Analysis of Corrugated Flexure Beam Using Stiffness Matrix Method
,”
J. Mech. Eng. Sci.
,
233
(
5
), pp.
1818
1827
.
34.
Wang
,
N.
,
Zhang
,
Z.
,
Yue
,
F.
, and
Zhang
,
X.
,
2019
, “
Design and Analysis of Translational Joints Using Corrugated Flexural Beams With Conic Curve Segments
,”
Mech. Mach. Theor.
,
132
(
2
), p. 223–235.
35.
Li
,
C.
,
Wang
,
N.
,
Chen
,
B.
,
Shang
,
G.
,
Zhang
,
X.
, and
Chen
,
W.
,
2022
, “
Spatial Compliance Modeling and Optimization of a Translational Joint Using Corrugated Flexure Units
,”
Mech. Mach. Theor.
,
176
(10), p.
104962
.
36.
Rad
,
F. P.
,
Vertechy
,
R.
,
Berselli
,
G.
, and
Parenti-Castelli
,
V.
,
2016
, “
Analytical Compliance Analysis and Finite Element Verification of Spherical Flexure Hinges for Spatial Compliant Mechanisms
,”
Mech. Mach. Theor.
,
101
(
7
), pp.
168
180
.
37.
Lee
,
V. D.
,
Gibert
,
J. M.
, and
Ziegert
,
J. C.
,
2014
, “
Hybrid Bi-Directional Flexure Joint
,”
Precis. Eng.
,
38
(
1
), pp.
270
278
.
38.
Ling
,
M. X.
,
Yuan
,
L.
,
Zhou
,
H.
, and
Ning
,
M.
,
2023
, “
Modified Transfer Matrix Method for Vibration Analysis of Beam Structures Including Complex Branches and Rigid Bodies
,”
Mech. Syst. Signal. Pr.
,
187
(6), p.
109858
.
39.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
L.
Howell
,
S. P.
Magleby
, and
B. M.
Olsen
, eds.,
Springer
,
New York
, pp.
189
216
.
You do not currently have access to this content.