Abstract

Global product platforms can reduce production costs through economies of scale and learning but may decrease revenues by restricting the ability to customize for each market. We model the global platforming problem as a Nash equilibrium among oligopolistic competing firms, each maximizing its profit across markets with respect to its pricing, design, and platforming decisions. We develop and compare two methods to identify Nash equilibria: (1) a sequential iterative optimization (SIO) algorithm, in which each firm solves a mixed-integer nonlinear programming problem globally, with firms iterating until convergence; and (2) a mathematical program with equilibrium constraints (MPEC) that solves the Karush Kuhn Tucker conditions for all firms simultaneously. The algorithms’ performance and results are compared in a case study of plug-in hybrid electric vehicles where firms choose optimal battery capacity and whether to platform or differentiate battery capacity across the US and Chinese markets. We examine a variety of scenarios for (1) learning rate and (2) consumer willingness to pay (WTP) for range in each market. For the case of two firms, both approaches find the Nash equilibrium in all scenarios. On average, the SIO approach solves 200 times faster than the MPEC approach, and the MPEC approach is more sensitive to the starting point. Results show that the optimum for each firm is to platform when learning rates are high or the difference between consumer willingness to pay for range in each market is relatively small. Otherwise, the PHEVs are differentiated with low-range for China and high-range for the US.

References

1.
Simpson
,
T. W.
,
Allen
,
J. K.
,
Colton
,
J. S.
,
Heikes
,
R. G.
,
Rosen
,
W.
, and
Schrage
,
D. P.
,
1998
, “
A Concept Exploration Method for Product Family Design
,” Doctoral Dissertation, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
3.
“Fundamental Concepts of Platforming,” MIT Professional Education’s Short Programs. http://web.mit.edu/deweck/Public/ESD39/Lectures/ESD39s.02.Platform-Def-Examples.pdf, Accessed November 5, 2021.
4.
Sanderson
,
S.
, and
Uzumeri
,
M.
,
1995
, “
Managing Product Families: The Case of the Sony Walkman
,”
Res. Pol.
,
24
(
5
), pp.
761
782
.
5.
Cusumano
,
M. A.
, and
Gawer
,
A.
,
2003
, “
The Elements of Platform Leadership
,”
IEEE Eng. Manag. Rev.
,
31
(
1
), pp.
8
8
.
6.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms
,
Simon and Schuster
,
New York
, Chapter 2.
7.
“Toyota Corolla 2018 Review,” CarsGuide, https://www.carsguide.com.au/urban/toyota-corolla-2018-review-76304, Accessed November 12, 2021.
8.
“Toyota’s Bold New Corolla Hatch Is Here: SA Prices & Specs,” https://www.iol.co.za/motoring/latest-launches/toyotas-bold-new-corolla-hatch-is-here-sa-prices-and-specs-19317323, Accessed November 12, 2021.
9.
Karlsson
,
C.
, and
Sköld
,
M.
,
2007
, “
Counteracting Forces in Multi-branded Product Platform Development
,”
Creat. Innov. Manag.
,
16
(
2
), pp.
133
141
.
10.
Simpson
,
T. W.
, and
D’Souza
,
B. S.
,
2004
, “
Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm
,”
Concurr. Eng.
,
12
(
2
), pp.
119
129
.
11.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
12.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
,
2002
, “
Introduction of a Product Family Penalty Function Using Physical Programming
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
164
172
.
13.
Fellini
,
R.
,
Papalambros
,
P.
, and
Weber
,
T.
,
2000
, “
Application of a Product Platform Design Process to Automotive Powertrains
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
.
14.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2009
, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
.
15.
Weck
,
O.
,
Suh
,
E.
, and
Chang
,
D.
,
2003
, “
Product Family and Platform Portfolio Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago IL
,
January
.
16.
Gonzalez-Zugasti
,
J.
,
Otto
,
K.
, and
Baker
,
J.
,
2000
, “
A Method for Architecting Product Platforms
,”
Res. Eng. Des.
,
12
, pp.
61
72
.
17.
Du
,
G.
,
Jiao
,
R.
, and
Chen
,
M.
,
2014
, “
Joint Optimization of Product Family Configuration and Scaling Design by Stackelberg Game
,”
Eur. J. Oper. Res.
,
232
(
2
), pp.
330
341
.
18.
Miao
,
C.
,
Du
,
G.
,
Xia
,
Y.
, and
Wang
,
D.
,
2016
, “
Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design
,”
Math. Probl. Eng.
,
2016
(
1–2
), p.
e1379315
.
19.
Khajavirad
,
A.
, and
Michalek
,
J. J.
,
2008
, “
A Decomposed Gradient-Based Approach for Generalized Platform Selection and Variant Design in Product Family Optimization
,”
ASME J. Mech. Des.
,
130
(
7
), p.
071101
.
20.
Khajavirad
,
A.
,
Michalek
,
J. J.
, and
Simpson
,
T. W.
,
2009
, “
An Efficient Decomposed Multiobjective Genetic Algorithm for Solving the Joint Product Platform Selection and Product Family Design Problem With Generalized Commonality
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
187
201
.
21.
Ki Moon
,
S.
, and
McAdams
,
D. A.
,
2012
, “
A Market-Based Design Strategy for a Universal Product Family
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111007
.
22.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2008
, “
Should Designers Worry About Market Systems?
ASME J. Mech. Des.
,
131
(
1
), p.
011011
.
23.
Khire
,
R.
, and
Messac
,
A.
,
2008
, “
A New Selection-Integrated Optimization (SIO) Methodology for Adaptive Systems Optimization
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101401
.
24.
Hogan
,
W. W.
,
2016
, “
Electricity Market Design: Optimization and Market Equilibrium
,”
Workshop on Optimization and Equilibrium in Energy Economics, Institute for Pure and Applied Mathematics
,
Los Angeles, CA
,
Jan. 13
, p.
58
.
25.
Charitopoulos
,
V. M.
,
Dua
,
V.
,
Pinto
,
J. M.
, and
Papageorgiou
,
L. G.
,
2020
, “
A Game-Theoretic Optimisation Approach to Fair Customer Allocation in Oligopolies
,”
Optim. Eng.
,
21
(
4
), pp.
1459
1486
.
26.
Liu
,
X.
,
Du
,
G.
, and
Xia
,
Y.
,
2015
, “
A Stackelberg Game Theoretic Approach to Competitive Product Portfolio Management
,”
12th International Symposium on Operations Research and Its Applications in Engineering, Technology and Management (ISORA 2015)
,
Luoyang, China
,
Aug. 21–24
, pp.
1
7
.
27.
Liu
,
X.
,
Du
,
G.
,
Jiao
,
R. J.
, and
Xia
,
Y.
,
2017
, “
Nested Bilevel Genetic Algorithms for Game-Theoretic Optimization of Product Line Design Considering Competition
,”
2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Singapore
,
Dec. 10–13
, pp.
2029
2033
.
28.
Yue
,
D.
, and
You
,
F.
,
2014
, “
Game-Theoretic Modeling and Optimization of Multi-echelon Supply Chain Design and Operation Under Stackelberg Game and Market Equilibrium
,”
Comput. Chem. Eng.
,
71
, pp.
347
361
.
29.
Yue
,
D.
, and
You
,
F.
,
2015
, “
Bilevel Optimization for Design and Operations of Non-Cooperative Biofuel Supply Chains
,”
Chem. Eng. Trans.
,
43
, pp.
1309
1314
.
30.
Shiau
,
C.
, and
Michalek
,
J. J.
,
2007
, “
A Game-Theoretic Approach to Finding Market Equilibria for Automotive Design Under Environmental Regulation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
.
31.
Whitefoot
,
K.
,
Grimes-Casey
,
H.
,
Girata
,
C.
,
Morrow
,
W.
,
Winebrake
,
J.
,
Keoleian
,
G.
, and
Skerlos
,
S.
,
2011
, “
Consequential Life Cycle Assessment With Market-Driven Design
,”
J. Ind. Ecol.
,
15
(
5
), pp.
726
742
.
32.
Whitefoot
,
K.
, and
Skerlos
,
S.
,
2011
, “
Design Incentives to Increase Vehicle Size Created From the U.S. Footprint-Based Fuel Economy Standards
,”
Energy Pol.
,
41
, pp.
402
411
.
33.
Whitefoot
,
K. S.
,
Fowlie
,
M. L.
, and
Skerlos
,
S. J.
,
2017
, “
Compliance by Design: Influence of Acceleration Trade-Offs on CO2 Emissions and Costs of Fuel Economy and Greenhouse Gas Regulations
,”
Environ. Sci. Technol.
,
51
(
18
), pp.
10307
10315
.
34.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2003
, “
A Study of Emission Policy Effects on Optimal Vehicle Design Decisions
,”
Volume 2: 29th Design Automation Conference, Parts A and B, ASMEDC
,
Chicago, IL
,
January
.
35.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071003
.
36.
Shiau
,
C.-S. N.
,
Michalek
,
J. J.
, and
Hendrickson
,
C. T.
,
2009
, “
A Structural Analysis of Vehicle Design Responses to Corporate Average Fuel Economy Policy
,”
Transp. Res. Part Policy Pract.
,
43
(
9–10
), pp.
814
828
.
37.
Choi
,
S.
,
Desarbo
,
W.
, and
Harker
,
P.
,
1990
, “
Product Positioning Under Price Competition
,”
Manag. Sci.
,
36
(
2
), pp.
175
199
.
38.
Horsky
,
D.
, and
Nelson
,
P.
,
1992
, “
New Brand Positioning and Pricing in an Oligopolistic Market
,”
Mark. Sci.
,
11
(
2
), pp.
133
153
.
39.
Rhim
,
H.
, and
Cooper
,
L. G.
,
2005
, “
Assessing Potential Threats to Incumbent Brands: New Product Positioning Under Price Competition in a Multisegmented Market
,”
Int. J. Res. Mark.
,
22
(
2
), pp.
159
182
.
40.
Luo
,
L.
,
Kannan
,
P. K.
, and
Ratchford
,
B. T.
,
2007
, “
New Product Development Under Channel Acceptance
,”
Mark. Sci.
,
26
(
2
), pp.
149
163
.
41.
Sakti
,
A.
,
Michalek
,
J. J.
,
Fuchs
,
E. R. H.
, and
Whitacre
,
J. F.
,
2015
, “
A Techno-Economic Analysis and Optimization of Li-Ion Batteries for Light-Duty Passenger Vehicle Electrification
,”
J. Power Sources
,
273
, pp.
966
980
.
42.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2001
, “
Assessing Value in Platformed Product Family Design
,”
Res. Eng. Des.
,
13
(
1
), pp.
30
41
.
43.
“‪Cost Models for Evaluating Virtual Design Strategies in Multicycle Product Families,” https://scholar.google.com/citations?view_op=view_citation&hl=en &user=0o6ufUkAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=0o6ufUkAAAAJ:qxL8FJ1GzNcC, Accessed November 12, 2021.
44.
Argote
,
L.
, and
Epple
,
D.
,
1990
, “
Learning Curves in Manufacturing
,”
Science
,
247
(
4945
), pp.
920
924
.
45.
Yoshimura
,
M.
,
Taniguchi
,
M.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2005
, “
Hierarchical Arrangement of Characteristics in Product Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
701
709
.
46.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
47.
Green
,
P. E.
,
Carroll
,
J. D.
, and
Goldberg
,
S. M.
,
1981
, “
A General Approach to Product Design Optimization Via Conjoint Analysis
,”
J. Mark.
,
45
(
3
), pp.
17
37
.
48.
Phadke
,
M. S.
,
1986
, “
Design Optimization Case Studies
,”
ATT Tech. J.
,
65
(
2
), pp.
51
68
.
49.
Shi
,
L.
,
Ólafsson
,
S.
, and
Chen
,
Q.
,
2001
, “
An Optimization Framework for Product Design
,”
Manag. Sci.
,
47
(
12
), pp.
1681
1692
.
50.
Kannan
,
B. K.
, and
Kramer
,
S. N.
,
1994
, “
An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
405
411
.
51.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
,
2005
, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
.
52.
Besharati
,
B.
,
Luo
,
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2005
, “
Multi-objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
884
892
.
53.
McAllister
,
C. D.
, and
Simpson
,
T. W.
,
2003
, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
124
130
.
54.
Hoffenson
,
S.
,
Dagman
,
A.
, and
Söderberg
,
R.
,
2015
, “
Visual Quality and Sustainability Considerations in Tolerance Optimization: A Market-Based Approach
,”
Int. J. Prod. Econ.
,
168
, pp.
167
180
.
55.
Kang
,
N.
,
Ren
,
Y.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2016
, “
Public Investment and Electric Vehicle Design: A Model-Based Market Analysis Framework With Application to a USA–China Comparison Study
,”
Des. Sci.
,
2
, p.
e6
.
56.
Ruiz
,
J. P.
, and
Grossmann
,
I. E.
,
2017
, “
Global Optimization of Non-Convex Generalized Disjunctive Programs: A Review on Reformulations and Relaxation Techniques
,”
J. Glob. Optim.
,
67
(
1–2
), pp.
43
58
.
57.
Train
,
K.
,
2009
,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
UK
, p.
388
.
58.
Helveston
,
J. P.
,
Liu
,
Y.
,
Feit
,
E. M.
,
Fuchs
,
E.
,
Klampfl
,
E.
, and
Michalek
,
J. J.
,
2015
, “
Will Subsidies Drive Electric Vehicle Adoption? Measuring Consumer Preferences in the U.S. and China
,”
Transp. Res. Part Policy Pract.
,
73
, pp.
96
112
.
59.
“When MSRP Prices Change: What to Know, What to Ask,” CarsDirect, https://www.carsdirect.com/car-pricing/when-msrp-prices-change-what-to-know-what-to-ask, Accessed November 25, 2021.
60.
Montoya
,
R.
,
2019
,
Edmunds: Pros and Cons of Outgoing Car Model vs. Redesign
,
Boston Globe
,
Boston, MA
. https://www.boston.com/cars/car-guides/2019/12/06/edmunds-pros-and-cons-of-outgoing-car-model-vs-redesign/
61.
Sahinidis
,
N. V.
,
1996
, “
BARON: A General Purpose Global Optimization Software Package
,”
J. Glob. Optim.
,
8
(
2
), pp.
201
205
.
62.
Belotti
,
P.
,
Kirches
,
C.
,
Leyffer
,
S.
,
Linderoth
,
J.
,
Luedtke
,
J.
, and
Mahajan
,
A.
,
2013
, “
Mixed-Integer Nonlinear Optimization*†
,”
Acta Numer.
,
22
, pp.
1
131
.
63.
Collet
,
P.
, and
Rennard
,
J.-P.
,
2007
, “
Stochastic Optimization Algorithms
,”
Handbook of Research on Nature Inspired Computing for Economics and Management
.
64.
Karush
,
W.
,
1939
, “
Minima of Functions of Several Variables with Inequalities as Side Constraints
,”
M.Sc. thesis, Department of Mathematics, University of Chicago, Chicago, IL
65.
Kuhn
,
H. W.
, and
Tucker
,
A. W.
, “
Nonlinear programming
,”
2nd Berkeley Symposium on Mathematical Statistics and Probability
,
Berkeley, CA
,
July 31–Aug. 12
, p.
12
.
66.
Yip
,
A.
,
Michalek
,
J.
, and
Whitefoot
,
K.
,
2019
, “
Implications of Competitor Representation on Optimal Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
67.
Nash
,
J.
,
1951
, “
Non-Cooperative Games
,”
Ann. Math.
,
54
(
2
), pp.
286
295
.
68.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp.
325
362
.
69.
Scholtes
,
S.
,
2001
, “
Convergence Properties of a Regularization Scheme for Mathematical Programs With Complementarity Constraints
,”
SIAM J. Optim.
,
11
(
4
), pp.
918
936
.
70.
Center for Automotive Research
,
2017
, “Automotive Product Development Cycles and the Need for Balance with the Regulatory Environment,” Center for Automotive Research.
71.
Yuksel
,
T.
,
2015
, “
Quantification of Temperature Implications and Investigation of Battery Design Options for Electrified Vehicles
,”
Doctoral Dissertation
,
Carnegie Mellon University
,
Pittsburgh, PA
.
72.
Woerlen
,
C.
,
2004
, “Experience Curves for Energy Technologies,”
Encyclopedia of Energy
,
C. J.
Cleveland
, ed.,
Elsevier
,
New York
, pp.
641
649
.
73.
Thompson
,
P.
,
2010
, “Chapter 10—Learning by Doing,”
Handbook of the Economics of Innovation
,
B.H.
Hall
, and
N.
Rosenberg
, eds.,
North-Holland
,
Amsterdam
, pp.
429
476
.
74.
Ciez
,
R. E.
, and
Whitacre
,
J. F.
,
2017
, “
Comparison Between Cylindrical and Prismatic Lithium-Ion Cell Costs Using a Process Based Cost Model
,”
J. Power Sources
,
340
, pp.
273
281
.
75.
Penisa
,
X. N.
,
Castro
,
M. T.
,
Pascasio
,
J. D. A.
,
Esparcia
,
E. A.
,
Schmidt
,
O.
, and
Ocon
,
J. D.
,
2020
, “
Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model
,”
Energies
,
13
(
20
), p.
5276
.
76.
Dutton
,
J. M.
, and
Thomas
,
A.
,
1984
, “
Treating Progress Functions as a Managerial Opportunity
,”
Acad. Manage. Rev.
,
9
(
2
), pp.
235
247
.
77.
Kim
,
J.-H.
, and
Lee
,
Y.-G.
,
2018
, “
Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources
,”
Sustainability
,
10
(
9
), p.
3322
.
78.
Hollander
,
S.
,
2003
,
The Sources of Increased Efficiency: A Study of DuPont Rayon Plants
,
MIT Press
,
Cambridge, MA
, pp.
xii
227
.
79.
Hsieh
,
I.-Y. L.
,
Pan
,
M. S.
,
Chiang
,
Y.-M.
,
Green
,
W. H.
, and
Jr.
,
2019
, “
Learning Only Buys You So Much: Practical Limits on Battery Price Reduction
,”
Appl. Energy
,
239
, pp.
218
224
.
80.
Schmidt
,
O.
,
Hawkes
,
A.
,
Gambhir
,
A.
, and
Staffell
,
I.
,
2017
, “
The Future Cost of Electrical Energy Storage Based on Experience Rates
,”
Nat. Energy
,
2
(
8
), pp.
1
8
.
81.
Nykvist
,
B.
, and
Nilsson
,
M.
,
2015
, “
Rapidly Falling Costs of Battery Packs for Electric Vehicles
,”
Nat. Clim. Change
,
5
(
4
), pp.
329
332
.
82.
Egelman
,
C. D.
,
Epple
,
D.
,
Argote
,
L.
, and
Fuchs
,
E. R. H.
,
2017
, “
Learning by Doing in Multiproduct Manufacturing: Variety, Customizations, and Overlapping Product Generations
,”
Manag. Sci.
,
63
(
2
), pp.
405
423
.
83.
“BatPaC: Battery Manufacturing Cost Estimation | Argonne National Laboratory,” https://www.anl.gov/partnerships/batpac-battery-manufacturing-cost-estimation, Accessed November 25, 2021.
84.
Witt
,
J.
,
2022
, “Costs of Electric Car Battery Replacement,” Recurrent. https://www.recurrentauto.com/research/costs-ev-battery-replacement, Accessed April 12, 2022.
85.
“2019 Toyota Prius Prime Specifications,” Car Guide, https://www.guideautoweb.com/en/makes/toyota/prius/2019/specifications/prime/, Accessed November 12, 2021.
86.
Shiau
,
C.-S. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091013
.
87.
National Research Council
,
2010
,
Transitions to Alternative Transportation Technologies—Plug-in Hybrid Electric Vehicles
,
The National Academies Press
,
Washington, DC
, pp.
7
8
.
88.
Vermeulen
,
I.
,
Helmus
,
J. R.
,
Lees
,
M.
, and
van den Hoed
,
R.
,
2019
, “
Simulation of Future Electric Vehicle Charging Behavior—Effects of Transition From PHEV to FEV
,”
World Electr. Veh. J.
,
10
(
2
), p.
42
.
89.
Pesaran
,
A.
,
Markel
,
T.
,
Tataria
,
H.
, and
Howell
,
D.
,
2009
, “
Battery Requirements for Plug-In Hybrid Electric Vehicles—Analysis and Rationale
,”
Presented at the 23rd International Electric Vehicle Symposium (EVS-23)
,
Anaheim, CA
Dec. 2–5
.
90.
“Retail New Passenger Car Sales in the U.S. 2019,” Statista. https://www-statista-com.cmu.idm.oclc.org/statistics/183618/us-retail-new-passenger-car-sales-since-1990/. Accessed November 12, 2021.
91.
“China: Car Sales 2008-2019,” Statista, https://www-statista-com.cmu.idm.oclc.org/statistics/233743/vehicle-sales-in-china/, Accessed November 12, 2021.
92.
2016, “Toyota Prius Plug-in Hybrid US Car Sales Figures,” carsalesbase.com.
93.
“WACC For General Motors Company (GM),” finbox.com. https://finbox.com/NYSE:GM/explorer/wacc, Accessed November 26, 2021.
94.
Morrow
,
W. R.
,
Mineroff
,
J.
, and
Whitefoot
,
K. S.
,
2014
, “
Numerically Stable Design Optimization With Price Competition
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081002
.
95.
“Compare Electric Cars: EV Range, Specs, Pricing & More,” InsideEVs, https://insideevs.com/reviews/344001/compare-evs/, Accessed November 12, 2021.
You do not currently have access to this content.