Abstract

Counterbalance valves (CBVs) are broadly applied in hydraulic manipulators, which is essential to ensure safe operation while moving a heavy load. They inevitably introduce additional energy consumption and poor dynamic performance. For the manipulator joint in tunnel boring machines, smooth and precise motion control has to be realized. However, for the forward design considerations, in this case, no systematic work has been done to determine the component parameters based on an energy-saving approach and to derive the natural frequency of the joint at the hydraulic level. To fill this gap, this paper proposes a forward design approach for the proportional valve-controlled hydraulic cylinder system containing CBVs, which is a basic hydraulic configuration adopted for the manipulator joint. Specifically, the optimization model aiming at the minimum energy consumption is defined and improved to solve the key parameters, including the pilot ratio of the CBV and the area ratio of the cylinder. By considering constraints, the other component parameters could be further calculated. After that, the theoretical derivation of natural frequency is given to evaluate the response capability of the system. The overall design procedure is presented to determine the cylinder, CBV, control valve, and constant pressure supply. Based on the validated numerical model, the energy-based design principle is proven effective and could ensure that energy saving is not less than 5% and not more than 36% on average. Furthermore, the natural frequency obtained by the sweep test is verified to be consistent with the theoretical value, and the impact of this parameter on control performance is analyzed. The results indicate that the proposed approach has an excellent guide for the forward design of such systems.

References

1.
Shi
,
H.
,
Gong
,
G.
, and
Yang
,
H.
,
2011
, “
Drive System Design and Error Analysis of the 6 Degrees of Freedom Segment Erector of Shield Tunneling Machine
,”
Front. Mech. Eng.
,
6
(
3
), pp.
369
376
.
2.
Yu
,
H.
,
Tao
,
J.
,
Qin
,
C.
,
Liu
,
M.
,
Xiao
,
D.
,
Sun
,
H.
, and
Liu
,
C.
,
2022
, “
A Novel Constrained Dense Convolutional Autoencoder and DNN-Based Semi-Supervised Method for Shield Machine Tunnel Geological Formation Recognition
,”
Mech. Syst. Signal Process.
,
165
, p.
108353
.
3.
Jose
,
J. T.
,
Das
,
J.
, and
Mishra
,
S. K.
,
2021
, “
Dynamic Improvement of Hydraulic Excavator Using Pressure Feedback and Gain Scheduled Model Predictive Control
,”
IEEE Sens. J.
,
21
(
17
), pp.
18526
18534
.
4.
Jensen
,
K. J.
,
Ebbesen
,
M. K.
, and
Hansen
,
M. R.
,
2021
, “
Anti-Swing Control of a Hydraulic Loader Crane With a Hanging Load
,”
Mechatronics
,
77
, p.
102599
.
5.
Sreeharsha
,
R.
,
Bhola
,
M.
,
Kumar
,
N.
, and
Vardhan
,
A.
,
2019
, “Energy Saving Analysis Using Pilot Operated Counter Balance Valve,”
Advances in Engineering Design
,
A.
Prasad
,
S. S.
Gupta
, and
R. K.
Tyagi
, eds.,
Springer
,
Singapore
, pp.
279
287
.
6.
Zhao
,
L.
,
Liu
,
X.
, and
Wang
,
T.
,
2010
, “
Influence of Counterbalance Valve Parameters on Stability of the Crane Lifting System
,”
Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation
,
Xi'an, China
,
Aug. 4–7
, IEEE, pp.
1010
1014
.
7.
Zaehe
,
B.
, and
Herbert
,
D.
,
2015
, “
New Energy Saving Counterbalance Valve
,”
SAE Int. J. Commer. Veh.
,
8
(
2
), pp.
583
589
.
8.
Kozlov
,
L.
,
Burennikov
,
Y. A.
,
Piontkevych
,
O.
, and
Paslavska
,
O.
,
2017
, “
Optimization of Design Parameters of the Counterbalance Valve for the Front-End Loader Hydraulic Drive
,”
Proceedings of the 22nd International Scientific Conference
,
Kaunas University of Technology
,
May 19
, pp.
195
200
.
9.
Kozlov
,
L.
,
Polishchuk
,
L.
,
Piontkevych
,
O.
,
Purdyk
,
V.
,
Petrov
,
O. V.
,
Tverdomed
,
V. M.
, and
Tungatarova
,
A.
,
2021
, “Optimization of Design Parameters of a Counterbalance Valve for a Hydraulic Drive Invariant to Reversal Loads,”
Mechatronic Systems
,
W.
Wójcik
,
S.
Pavlov
, and
M.
Kalimoldayev
, eds., Vol.
1
,
Routledge
,
London
, pp.
137
148
.
10.
Kozlov
,
L. G.
,
Polishchuk
,
L. K.
,
Piontkevych
,
O. V.
,
Korinenko
,
M. P.
,
Horbatiuk
,
R. M.
,
Komada
,
P.
,
Orazalieva
,
S.
, and
Ussatova
,
O.
,
2019
, “Experimental Research Characteristics of Counterbalance Valve for Hydraulic Drive Control System of Mobile Machine,”
Prz. Elektrotech.
,
95
(
4
), pp.
104
109
.
11.
Stawiński
,
Ł
,
2016
, “
Experimental and Modeling Studies of Hydrostatic Systems With the Counterbalance Valves Which Are Used in Hydraulic Lifting Systems With Passive and Active Load
,”
Eksploat. Niezawodn.
,
18
(
3
), pp.
406
412
.
12.
Bak
,
M. K.
, and
Hansen
,
M. R.
,
2013
, “
Model Based Design Optimization of Operational Reliability in Offshore Boom Cranes
,”
Int. J. Fluid Power
,
14
(
3
), pp.
53
65
.
13.
Metwally
,
M.
, and
Aly
,
A.
,
2010
, “
Effect of Upstream Throttle Valve on Static and Dynamic Characteristics of Counterbalance Valve
,”
Proceedings of the International Conference on Applied Mechanics and Mechanical Engineering
,
Cairo, Egypt
,
May 25–27
, pp.
1
17
.
14.
Yao
,
Y.
,
Zhou
,
H.
,
Chen
,
Y.
, and
Yang
,
H.
,
2014
, “
Stability Analysis of a Pilot Operated Counterbalance Valve for a Big Flow Rate
,”
Proceedings of the Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Paper No.
V001T001A005
.
15.
Sørensen
,
J. K.
,
Hansen
,
M. R.
, and
Ebbesen
,
M. K.
,
2016
, “
Novel Concept for Stabilising a Hydraulic Circuit Containing Counterbalance Valve and Pressure Compensated Flow Supply
,”
Int. J. Fluid Power
,
17
(
3
), pp.
153
162
.
16.
Sørensen
,
J. K.
,
Hansen
,
M. R.
, and
Ebbesen
,
M. K.
,
2016
, “
Numerical and Experimental Study of a Novel Concept for Hydraulically Controlled Negative Loads
,”
Model. Identif. Control
,
37
(
4
), pp.
195
211
.
17.
Hansen
,
M.
, and
Sørensen
,
J.
,
2016
, “
Improvements in the Control of Hydraulic Actuators
,” WO2016200272A1.
18.
Nordhammer
,
P. A.
,
Bak
,
M. K.
, and
Hansen
,
M. R.
,
2012
, “
A Method for Reliable Motion Control of Pressure Compensated Hydraulic Actuation With Counterbalance Valves
,”
Proceedings of the 2012 12th International Conference on Control, Automation and Systems
,
Jeju, South Korea
,
Oct. 17–21
, IEEE, pp.
759
763
.
19.
Jalayeri
,
E.
,
Imam
,
A.
, and
Sepehri
,
N.
,
2015
, “
A Throttle-Less Single Rod Hydraulic Cylinder Positioning System for Switching Loads
,”
Case Stud. Mech. Syst. Signal Process.
,
1
, pp.
27
31
.
20.
Jalayeri
,
E.
,
Imam
,
A.
,
Tomas
,
Z.
, and
Sepehri
,
N.
,
2015
, “
A Throttle-Less Single-Rod Hydraulic Cylinder Positioning System: Design and Experimental Evaluation
,”
Adv. Mech. Eng.
,
7
(
5
), p.
1687814015583249
.
21.
Imam
,
A.
,
Rafiq
,
M.
,
Jalayeri
,
E.
, and
Sepehri
,
N.
,
2017
, “
Design, Implementation and Evaluation of a Pump-Controlled Circuit for Single Rod Actuators
,”
Actuators
,
6
(
1
), p.
10
.
22.
Qu
,
S.
,
Fassbender
,
D.
,
Vacca
,
A.
, and
Busquets
,
E.
,
2021
, “
A High-Efficient Solution for Electro-Hydraulic Actuators With Energy Regeneration Capability
,”
Energy
,
216
, pp.
242
251
.
23.
Mengren
,
J.
, and
Qingfeng
,
W.
,
2016
, “
An Energy-Saving Way to Balance Variable Negative Load Based on Back-Stepping Control With Load Observer
,”
Proceedings of the Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Paper No.
V001T001A011
.
24.
Helian
,
B.
,
Chen
,
Z.
, and
Yao
,
B.
,
2021
, “
Energy-Saving and Accurate Motion Control of a Hydraulic Actuator With Uncertain Negative Loads
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
253
264
.
25.
Sciancalepore
,
A.
,
Vacca
,
A.
, and
Weber
,
S.
,
2021
, “
An Energy-Efficient Method for Controlling Hydraulic Actuators Using Counterbalance Valves With Adjustable Pilot
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
11
), p.
111007
.
26.
Bartlett
,
H. L.
,
2021
, “
A Symmetric Multichamber Hydraulic Cylinder With Variable Piston Area: An Approach to Compact and Efficient Electrohydrostatic Actuation
,”
ASME J. Mech. Des.
,
143
(
8
), p.
083501
.
27.
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2013
, “
Energetic and Dynamic Impact of Counterbalance Valves in Fluid Power Machines
,”
Energy Convers. Manage.
,
76
, pp.
701
711
.
28.
Cristofori
,
D.
,
Vacca
,
A.
, and
Ariyur
,
K.
,
2012
, “
A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines
,”
SAE Int. J. Commer. Veh.
,
5
(
2
), pp.
586
596
.
29.
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2013
, “
Energy Saving Potentials of a Novel Electro-Hydraulic Method to Reduce Oscillations in Fluid Power Machines: The Case of a Hydraulic Crane
,”
SAE Int. J. Commer. Veh.
,
6
(
2
), pp.
269
280
.
30.
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2014
, “
A General Auto-Tuning Method for Active Vibration Damping of Mobile Hydraulic Machines
,”
Proceedings of the Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Paper No.
V001T005A011
.
31.
Bianchi
,
R.
,
Ritelli
,
G. F.
,
Vacca
,
A.
, and
Ruggeri
,
M.
,
2015
, “
A Frequency-Based Control Methodology for the Reduction of Payload Oscillations in Hydraulic Load Handling Machines
,”
Proceedings of the Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Paper No.
V001T001A004
.
32.
Bianchi
,
R.
,
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2016
, “
A Filter-Based Control Approach to Reduce Payload Oscillations in Hydraulic Cranes
,”
Proceedings of the Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Paper No.
V001T001A038
.
33.
Bianchi
,
R.
,
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2017
, “
Payload Oscillation Reduction in Load-Handling Machines: A Frequency-Based Approach
,”
Proc. Inst. Mech. Eng., I: J. Syst. Control Eng.
,
231
(
3
), pp.
199
212
.
34.
Jensen
,
K. J.
,
Kjeld Ebbesen
,
M.
, and
Rygaard Hansen
,
M.
,
2020
, “
Development of Point-to-Point Path Control in Actuator Space for Hydraulic Knuckle Boom Crane
,”
Actuators
,
9
(
2
), p.
27
.
35.
Lyu
,
L.
,
Liang
,
X.
, and
Guo
,
J.
,
2021
, “
Synchronization Control of a Dual-Cylinder Lifting Gantry of Segment Erector in Shield Tunneling Machine Under Unbalance Loads
,”
Machines
,
9
(
8
), p.
152
.
36.
Wang
,
L.
,
Sun
,
W.
,
Gong
,
G.
, and
Yang
,
H.
,
2017
, “
Electro-Hydraulic Control of High-Speed Segment Erection Processes
,”
Autom. Constr.
,
73
, pp.
67
77
.
37.
Zhang
,
F.
,
Zhang
,
J.
,
Cheng
,
M.
, and
Xu
,
B.
,
2021
, “
A Flow-Limited Rate Control Scheme for the Master–Slave Hydraulic Manipulator
,”
IEEE Trans. Ind. Electron.
,
69
(
5
), pp.
4988
4998
.
38.
Yoon
,
Y.
,
Sun
,
Z.
, and
Du
,
H.
,
2019
, “
Inverse Modeling Approach for Parametric Frequency Domain Analysis of an Electrohydraulic System
,”
Mech. Syst. Signal Process.
,
121
, pp.
412
425
.
39.
Ma
,
W.
,
Wang
,
D.
, and
Ting
,
K.-L.
,
2010
, “
Characteristic Matrices and Conceptual Design of Hydraulic Systems
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031005
.
40.
Merritt
,
H. E.
,
1967
, “Electrohydraulic Servomechansms”
Hydraulic Control Systems
,
Wiley
,
New York
, pp.
224
230
.
41.
Ji
,
X.
,
Wang
,
C.
,
Zhang
,
Z.
,
Chen
,
S.
, and
Guo
,
X.
,
2021
, “
Nonlinear Adaptive Position Control of Hydraulic Servo System Based on Sliding Mode Back-Stepping Design Method
,”
Proc. Inst. Mech. Eng., I: J. Syst. Control Eng.
,
235
(
4
), pp.
474
485
.
42.
Wang
,
W.
,
Du
,
W.
,
Cheng
,
C.
,
Lu
,
X.
, and
Zou
,
W.
,
2022
, “
Output Feedback Control for Energy-Saving Asymmetric Hydraulic Servo System Based on Desired Compensation Approach
,”
Appl. Math. Model.
,
101
, pp.
360
379
.
43.
ISO 3320-2013 Fluid Power Systems and Components—Cylinder Bores and Piston Rod Diameters and Area Ratios
,” Metric Series,
International Organization for Standardization (ISO)
,
Geneva, Switzerland
.
44.
Load Holding Cartridges
,” https://www.sunhydraulics.com/zh/models/cartridges/load-holding/counterbalance, Accessed November 3, 2021.
45.
Nachtwe
,
P.
,
2018
, “
How Natural Frequency Limits Frequency of Acceleration
,” Power & Motion. https://www.powermotiontech.com/sensors-software/controls-instrumentation/article/21887755/how-natural-frequency-limits-frequency-of-acceleration, Last modified September 25.
46.
Yang
,
Q.
,
Zhu
,
R.
,
Niu
,
Z.
,
Chen
,
C.
,
Mao
,
Q.
, and
Zheng
,
Y.
,
2020
, “
Natural Frequency Analysis of Hydraulic Quadruped Robot and Structural Optimization of the Leg
,”
ASME J. Dyn. Sys., Meas., Control
,
142
(
1
), p.
011009
.
You do not currently have access to this content.