Abstract

Precision motion systems that call for an ultrahigh resolution are widely used in ultrahigh-precision engineering applications. In this article, a 6-SPS perpendicular compliant parallel micro-manipulation robot is presented. It is difficult to establish the mapping relationship between the applied voltage and end-effector pose due to the existence of compliant joints and piezoelectric actuators. A modeling method for a 6-SPS perpendicular compliant parallel micro-manipulation robot considering the motion in nonfunctional directions and hysteresis effect is proposed to reflect the characteristic from input voltage to output pose. The motion of the spherical compliant joint is regarded as a spatial six degrees-of-freedom mechanism. This method considers the motion errors in multiple nonfunctional directions of the compliant joints. The internal force and torque are also taken into account based on the spatial force and moment balance condition. The slow, fast dynamic modes, and hysteresis nonlinearity behavior are described using a series and parallel hybrid model structures. The kinematic model and compliance model without considering the motion in nonfunctional directions are conducted for comparison. Simulation results show that the presented modeling method has higher modeling accuracy. Finally, experiments on a 6DOF compliant parallel micro-manipulation robot reveal the fine modeling performance of the developed method for the precision motion systems in the presence of intrinsic hysteresis effect and motion error of compliant joints.

References

1.
Xu
,
R.
, and
Zhou
,
M.
,
2018
, “
A Self-Adaption Compensation Control for Hysteresis Nonlinearity in Piezo-Actuated Stages Based on Pi-Sigma Fuzzy Neural Network
,”
Smart Mater. Struct.
,
27
(
4
), p.
045002
.
2.
Mishra
,
J. P.
,
Xu
,
Q.
,
Yu
,
X.
, and
Jalili
,
M.
,
2018
, “
Precision Position Tracking for Piezoelectric-Driven Motion System Using Continuous Third-Order Sliding Mode Control
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1521
1531
.
3.
Chen
,
W.
,
Zhang
,
X.
,
Li
,
H.
,
Wei
,
J.
, and
Fatikow
,
S.
,
2017
, “
Nonlinear Analysis and Optimal Design of a Novel Piezoelectric-Driven Compliant Microgripper
,”
Mech. Mach. Theory
,
118
, pp.
32
52
.
4.
Li
,
L.
,
Huang
,
J.
,
Aphale
,
S. S.
, and
Zhu
,
L.
,
2020
, “
A Smoothed Raster Scanning Trajectory Based on Acceleration-Continuous B-Spline Transition for High-Speed Atomic Force Microscopy
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
24
32
.
5.
Croft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
,
2001
, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst. Meas. Contr.
,
123
(
1
), pp.
35
43
.
6.
Park
,
W.
,
Pak
,
S.
,
Kim
,
G. H.
,
Lee
,
S.
,
Chang
,
S.
,
Kim
,
S.
,
Jeong
,
B.
,
James Brendel
,
T.
, and
Kim
,
D. W.
,
2020
, “
Transformable Reflective Telescope for Optical Testing and Education
,”
Appl. Opt.
,
59
(
18
), p.
5581
.
7.
Mynderse
,
J.
, and
Chiu
,
G. T. C.
,
2016
, “
Two Degree-of-Freedom Hysteresis Compensation for a Dynamic Mirror Actuator
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
29
37
.
8.
Soto
,
F.
,
Wang
,
J.
,
Ahmed
,
R.
, and
Demirci
,
U.
,
2020
, “
Medical Robotics: Medical Micro/Nanorobots in Precision Medicine
,”
Adv. Sci.
,
7
(
21
), p.
2002203
.
9.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Robot.
,
25
(
3
), pp.
645
657
.
10.
Li
,
L.
,
Chen
,
Z.
,
Aphale
,
S. S.
, and
Zhu
,
L.
,
2020
, “
Fractional Repetitive Control of Nanopositioning Stages for High-Speed Scanning Using Low-Pass FIR Variable Fractional Delay Filter
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
547
557
.
11.
Ghafarian
,
M.
,
Shirinzadeh
,
B.
,
Al-Jodah
,
A.
, and
Das
,
T. K.
,
2020
, “
Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4313
4320
.
12.
Ling
,
M.
, and
Zhang
,
X.
,
2021
, “
Coupled Dynamic Modeling of Piezo-Actuated Compliant Mechanisms Subjected to External Loads
,”
Mech. Mach. Theory
,
160
, p.
104283
.
13.
Feliu-Talegon
,
D.
, and
Feliu-Batlle
,
V.
,
2022
, “
Control of Very Lightweight 2-DOF Single-Link Flexible Robots Robust to Strain Gauge Sensor Disturbances: A Fractional-Order Approach
,”
IEEE Trans. Control Syst. Technol.
,
30
(
1
), pp.
14
29
.
14.
Bhagat
,
U.
,
Shirinzadeh
,
B.
,
Clark
,
L.
,
Chea
,
P.
,
Qin
,
Y.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2014
, “
Design and Analysis of a Novel Flexure-Based 3-DOF Mechanism
,”
Mech. Mach. Theory
,
74
, pp.
173
187
.
15.
Gu
,
G.
,
Zhu
,
L.
, and
Su
,
C.
,
2014
, “
High-Precision Control of Piezoelectric Nanopositioning Stages Using Hysteresis Compensator and Disturbance Observer
,”
Smart Mater. Struct.
,
23
(
10
), p.
105007
.
16.
Xu
,
Q.
,
2017
, “
Continuous Integral Terminal Third-Order Sliding Mode Motion Control for Piezoelectric Nanopositioning System
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1828
1838
.
17.
Wang
,
R.
,
Zhang
,
X.
, et al
,
2018
, “
Parameters Optimization and Experiment of a Planar Parallel 3-DOF Nanopositioning System
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2388
2397
.
18.
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2017
, “
An Ultrathin Monolithic XY Nanopositioning Stage Constructed From a Single Sheet of Piezoelectric Material
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2611
2618
.
19.
Yun
,
Y.
, and
Li
,
Y.
,
2010
, “
Design and Analysis of a Novel 6-DOF Redundant Actuated Parallel Robot With Compliant Hinges for High Precision Positioning
,”
Nonlinear Dyn.
,
61
(
4
), pp.
829
845
.
20.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness and Displacement of a 3-DOF Perpendicular Parallel Micro-Manipulator
,”
Mech. Mach. Theory
,
45
(
5
), pp.
756
771
.
21.
Huang
,
Z.
,
Lai
,
X.
,
Zhang
,
P.
,
Meng
,
Q.
, and
Wu
,
M.
,
2020
, “
A General Control Strategy for Planar 3-DOF Underactuated Manipulators With One Passive Joint
,”
Inf. Sci.
,
534
, pp.
139
153
.
22.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2015
, “
Modeling and Prototype Experiment of a Six-DOF Parallel Micro-Manipulator With Nano-Scale Accuracy
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
229
(
14
), pp.
2611
2625
.
23.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
,
Jeffrey
,
G.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness, and Displacement of a 6-DOF Perpendicular Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011007
.
24.
Zhang
,
X.
,
Li
,
Z.
,
Su
,
C.
,
Lin
,
Y.
, and
Fu
,
Y.
,
2016
, “
Implementable Adaptive Inverse Control of Hysteretic Systems Via Output Feedback With Application to Piezoelectric Positioning Stages
,”
IEEE Trans. Ind. Electron.
,
63
(
9
), pp.
5733
5743
.
25.
Tao
,
Y.
,
Li
,
H.
, and
Zhu
,
L.
,
2021
, “
Time/Space-Separation-Based Gaussian Process Modeling for the Cross-Coupling Effect of a 2-DOF Nanopositioning Stage
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2186
2194
.
26.
Zhang
,
H.-T.
,
Hu
,
B.
,
Li
,
L.
,
Chen
,
Z.
,
Wu
,
D.
,
Xu
,
B.
,
Huang
,
X.
,
Gu
,
G.
, and
Yuan
,
Y.
,
2018
, “
Distributed Hammerstein Modeling for Cross-Coupling Effect of Multiaxis Piezoelectric Micropositioning Stages
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2794
2804
.
27.
Xie
,
Y.
,
Tan
,
Y.
, and
Dong
,
R.
,
2012
, “
Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
821
832
.
28.
Liu
,
Y.
,
Wang
,
Y.
, and
Chen
,
X.
,
2020
, “
Online Hysteresis Identification and Compensation for Piezoelectric Actuators
,”
IEEE Trans. Ind. Electron.
,
67
(
7
), pp.
5595
5603
.
29.
Liu
,
Y.
,
Du
,
D.
,
Qi
,
N.
, and
Zhao
,
J.
,
2019
, “
A Distributed Parameter Maxwell-Slip Model for the Hysteresis in Piezoelectric Actuators
,”
IEEE Trans. Ind. Electron.
,
66
(
9
), pp.
7150
7158
.
30.
Ling
,
M.
,
Cao
,
J.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms Via a Two-Port Dynamic Stiffness Model
,”
Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol.
,
57
, pp.
149
161
.
31.
Yang
,
M.
,
Du
,
Z.
, and
Dong
,
W.
,
2016
, “
Modeling and Analysis of Planar Symmetric Superelastic Flexure Hinges
,”
Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol.
,
46
, pp.
177
183
.
32.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
33.
Gu
,
G.-Y.
,
Zhu
,
L.-M.
, and
Su
,
C.-Y.
,
2014
, “
Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl-Ishlinskii Model
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1583
1595
.
34.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2016
, “
Modeling and Experimental Study of a Novel 3-RPR Parallel Micro Manipulator
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
115
124
.
35.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2004
, “
Two Microcantilever Designs: Lumped-Parameter Model for Static and Modal Analysis
,”
J. Microelectromech. Syst.
,
13
(
1
), pp.
41
50
.
36.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Design, Analysis and Simulation of a Novel 3-DOF Translational Micromanipulator Based on the PRB Model
,”
Mech. Mach. Theory
,
100
, pp.
235
258
.
37.
Yu
,
Y.
,
Feng
,
Z.
, and
Xu
,
Q.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
38.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Modeling and Performance Evaluation of a Flexure-Based XY Parallel Micromanipulator
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2127
2152
.
39.
Cai
,
K.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
D.
, and
Shirinzadeh
,
B.
,
2016
, “
Development of a Piezo-Driven 3-DOF Stage With T-Shape Flexible Hinge Mechanism
,”
Robot. Comput.-Integr. Manuf.
,
37
, pp.
125
138
.
40.
Tao
,
Y.
,
Zhu
,
Z.
,
Xu
,
Q.
,
Li
,
H.-X.
, and
Zhu
,
L.
,
2021
, “
Tracking Control of Nanopositioning Stages Using Parallel Resonant Controllers for High-Speed Nonraster Sequential Scanning
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
3
), pp.
1218
1228
.
41.
Chen
,
X.
, and
Li
,
W.
,
2015
, “
A Monolithic Self-Sensing Precision Stage: Design, Modeling, Calibration, and Hysteresis Compensation
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
812
823
.
42.
Qi
,
C.
,
Gao
,
F.
,
Li
,
H.-X.
,
Li
,
S.
,
Zhao
,
X.
, and
Dong
,
Y.
,
2015
, “
An Incremental Hammerstein-Like Modeling Approach for the Decoupled Creep, Vibration and Hysteresis Dynamics of Piezoelectric Actuator
,”
Nonlinear Dyn.
,
82
(
4
), pp.
2097
2118
.
43.
Lee
,
J.
,
Jin
,
M.
,
Kashiri
,
N.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G
et al,
2019
, “
Inversion-Free Force Tracking Control of Piezoelectric Actuators Using Fast Finite-Time Integral Terminal Sliding-Mode
,”
Mechatronics
,
57
, pp.
39
50
.
44.
Qi
,
C.
,
Lin
,
J.
,
Wu
,
Y.
, and
Gao
,
F.
,
2021
, “
A Wiener Model Identification for Creep and Vibration Linear and Hysteresis Nonlinear Dynamics of Piezoelectric Actuator
,”
IEEE Sens. J.
,
21
(
24
), pp.
27570
27581
.
45.
Zhu
,
W.
,
Zhu
,
Z.
,
To
,
S.
,
Liu
,
Q.
,
Ju
,
B.
, and
Zhou
,
X.
,
2016
, “
Redundantly Piezo-Actuated XYθz Compliant Mechanism for Nano-Positioning Featuring Simple Kinematics, Bi-Directional Motion and Enlarged Workspace
,”
Smart Mater. Struct.
,
25
(
12
), p.
125002
.
46.
Xu
,
Q.
, and
Tan
,
K.
,
2016
,
Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems
,
Springer
,
New York
, pp.
2
13
.
47.
Ling
,
M.
,
Cao
,
J.
,
Howell
,
L. L.
, and
Zeng
,
M.
,
2018
, “
Kinetostatic Modeling of Complex Compliant Mechanisms With Serial-Parallel Substructures: A Semi-Analytical Matrix Displacement Method
,”
Mech. Mach. Theory
,
125
(
5
), pp.
169
184
.
48.
Ngo
,
T.-H.
,
Tran
,
H.-V.
,
Nguyen
,
T.-A.
,
Dao
,
T.-P.
, and
Wang
,
D.-A.
,
2018
, “
Design and Kinetostatic Modeling of a Compliant Gripper for Grasp and Autonomous Release of Objects
,”
Adv. Robot.
,
32
(
13–14
), pp.
717
735
.
49.
He
,
X.-B.
,
Yu
,
J.-J.
,
Zhang
,
W.-W.
, and
Hao
,
G.-B.
,
2018
, “
Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms: A Comparative Case Study
,”
Chin. J. Mech. Eng
,
3
(
2
), pp.
54
65
.
You do not currently have access to this content.