Abstract

Deep generative models have shown significant promise in improving performance in design space exploration. But there is limited understanding of their interpretability, a necessity when model explanations are desired and problems are ill-defined. Interpretability involves learning design features behind design performance, called designer learning. This study explores human–machine collaboration’s effects on designer learning and design performance. We conduct an experiment (N = 42) designing mechanical metamaterials using a conditional variational autoencoder. The independent variables are: (i) the level of automation of design synthesis, e.g., manual (where the user manually manipulates design variables), manual feature-based (where the user manipulates the weights of the features learned by the encoder), and semi-automated feature-based (where the agent generates a local design based on a start design and user-selected step size); and (ii) feature semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning using item response theory and design performance using utopia distance and hypervolume improvement. The results suggest that design performance depends on the subjects’ feature-specific knowledge, emphasizing the precursory role of learning. The semi-automated synthesis locally improves the utopia distance. Still, it does not result in higher global hypervolume improvement compared to manual design synthesis and reduced designer learning compared to manual feature-based synthesis. The subjects learn semantic features better than abstract features only when design performance is sensitive to them. Potential cognitive constructs influencing learning in human–machine collaborative settings are discussed, such as cognitive load and recognition heuristics.

References

1.
Yonekura
,
K.
, and
Suzuki
,
K.
,
2021
, “
Data-Driven Design Exploration Method Using Conditional Variational Autoencoder for Airfoil Design
,”
Struct. Multidiscipl. Optim.
,
64
(
2
), pp.
613
624
.
2.
Raina
,
A.
,
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Goal-Directed Design Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for Generative Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124501
.
3.
Valdez
,
S.
,
Seepersad
,
C.
, and
Kambampati
,
S.
,
2021
, “
A Framework for Interactive Structural Design Exploration
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3B: 47th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V03BT03A006.
4.
Yoo
,
S.
,
Lee
,
S.
,
Kim
,
S.
,
Hwang
,
K. H.
,
Park
,
J. H.
, and
Kang
,
N.
,
2021
, “
Integrating Deep Learning Into CAD/CAE System: Generative Design and Evaluation of 3d Conceptual Wheel
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
2725
2747
.
5.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
6.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
J.
,
2017
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
J. Mech. Des.
,
139
(
5
), p.
051102
.
7.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Mo-padgan: Reparameterizing Engineering Designs for Augmented Multi-objective Optimization
,”
Appl. Soft Comput.
,
113
(
Part A
), p.
107909
.
8.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
9.
Sim
,
S. K.
, and
Duffy
,
A. H.
,
1998
, “
A Foundation for Machine Learning in Design
,”
AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf.
,
12
(
2
), pp.
193
209
.
10.
Grecu
,
D. L.
, and
Brown
,
D. C.
,
1998
, “
Dimensions of Machine Learning in Design
,”
AI EDAM
,
12
(
2
), pp.
117
121
.
11.
Hazelrigg
,
G. A.
,
2012
,
Fundamentals of Decision Making for Engineering Design and Systems Engineering
,
George A. Hazelrigg
. http://www.engineeringdecisionmaking.com
12.
Fillingim
,
K. B.
,
Nwaeri
,
R. O.
,
Borja
,
F.
,
Fu
,
K.
, and
Paredis
,
C. J.
,
2020
, “
Design Heuristics: Extraction and Classification Methods With Jet Propulsion Laboratory’s Architecture Team
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081101
.
13.
Suresh Kumar
,
R.
,
Srivatsa
,
S.
,
Silberstein
,
M.
, and
Selva
,
D.
,
2021
, “
Leveraging Design Heuristics for Multi-objective Metamaterial Design Optimization
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3B: 47th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V03BT03A032.
14.
Law
,
M. V.
,
Dhawan
,
N.
,
Bang
,
H.
,
Yoon
,
S.-Y.
,
Selva
,
D.
,
Hoffman
,
G.
, and
Gero
,
J. S.
,
2019
, “Side-by-Side HumanâComputer Design Using a Tangible User Interface,”
Design Computing and Cognition ’18
,
Springer Cham
,
Switzerland AG
, pp.
155
173
. https://link.springer.com/chapter/10.1007/978-3-030-05363-5_9
15.
Viros Martin
,
A.
, and
Selva
,
D.
,
2019
, “
From Design Assistants to Design Peers: Turning Daphne Into an Ai Companion for Mission Designers
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0402
.
16.
Zhang
,
X. L.
,
Simpson
,
T.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2012
, “
Supporting Knowledge Exploration and Discovery in Multi-dimensional Data With Interactive Multiscale Visualisation
,”
J. Eng. Des.
,
23
(
1
), pp.
23
47
.
17.
Bang
,
H.
,
Shi
,
Y. L. Z.
,
Hoffman
,
G.
,
Yoon
,
S.-Y.
,
Selva
,
D.
, and
Gero
,
J. S.
,
2019
, “Exploring the Feature Space to Aid Learning in Design Space Exploration,”
Design Computing and Cognition ’18
,
Springer Cham
,
Switzerland AG
, pp.
195
212
. https://link.springer.com/chapter/10.1007/978-3-030-05363-5_11
18.
Burnap
,
A.
,
Hauser
,
J. R.
, and
Timoshenko
,
A.
,
2019
, “
Design and Evaluation of Product Aesthetics: A Human–Machine Hybrid Approach
,” SSRN 3421771.
19.
Martin
,
A. V. I.
, and
Selva
,
D.
,
2020
, “
Daphne: A Virtual Assistant for Designing Earth Observation Distributed Spacecraft Missions
,”
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
,
13
, pp.
30
48
.
20.
Martin
,
A. V.
, and
Selva
,
D.
, “
Explanation Approaches for the Daphne Virtual Assistant
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
21.
Parasuraman
,
R.
,
Sheridan
,
T. B.
, and
Wickens
,
C. D.
,
2000
, “
A Model for Types and Levels of Human Interaction With Automation
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
,
30
(
3
), pp.
286
297
.
22.
Salomons
,
O. W.
,
van Houten
,
F. J.
, and
Kals
,
H.
,
1993
, “
Review of Research in Feature-Based Design
,”
J. Manuf. Syst.
,
12
(
2
), pp.
113
132
.
23.
Simon
,
H. A.
,
1981
,
The Sciences of the Artificial
,
MIT Press
,
Cambridge, MA
.
24.
Sohn
,
K.
,
Lee
,
H.
, and
Yan
,
X.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Advances in Neural Information Processing Systems 28
,
Montreal, Canada
,
Dec. 7–12
.
25.
Hambleton
,
R. K.
,
Swaminathan
,
H.
, and
Rogers
,
H. J.
,
1991
,
Fundamentals of Item Response Theory
, Vol. 2,
Sage Publishing
,
Thousand Oaks, CA
.
26.
Hartig
,
J.
, and
Höhler
,
J.
,
2009
, “
Multidimensional IRT Models for the Assessment of Competencies
,”
Stud. Educ. Eval.
,
35
(
2–3
), pp.
57
63
.
27.
Hans
,
A.
,
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2020
, “
Quantifying Individuals’ Theory-Based Knowledge Using Probabilistic Causal Graphs: A Bayesian Hierarchical Approach
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3: 17th International Conference on Design Education (DEC)
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V003T03A014.
28.
Sim
,
S. K.
, and
Duffy
,
A. H.
,
2003
, “
Towards an Ontology of Generic Engineering Design Activities
,”
Res. Eng. Des.
,
14
(
4
), pp.
200
223
.
29.
Sim
,
S. K.
, and
Duffy
,
A. H.
,
2004
, “
Evolving a Model of Learning in Design
,”
Res. Eng. Des.
,
15
(
1
), pp.
40
61
.
30.
Bang
,
H.
, and
Selva
,
D.
,
2020
, “
Measuring Human Learning in Design Space Exploration to Assess Effectiveness of Knowledge Discovery Tools
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8: 32nd International Conference on Design Theory and Methodology (DTM)
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V008T08A017.
31.
Ross
,
A.
,
Chen
,
N.
,
Hang
,
E. Z.
,
Glassman
,
E. L.
, and
Doshi-Velez
,
F.
,
2021
, “
Evaluating the Interpretability of Generative Models by Interactive Reconstruction
,”
CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May
, pp.
1
15
.
32.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
33.
An
,
J.
, and
Cho
,
S.
,
2015
, “
Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability
,”
Special Lecture IE
,
2
(
1
), pp.
1
18
.
34.
Khan
,
S.
,
Gunpinar
,
E.
, and
Sener
,
B.
,
2019
, “
Genyacht: An Interactive Generative Design System for Computer-Aided Yacht Hull Design
,”
Ocean Eng.
,
191
, p.
106462
.
35.
Bang
,
H.
, and
Selva
,
D.
,
2016
, “
ifeed: Interactive Feature Extraction for Engineering Design
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 28th International Conference on Design Theory and Methodology
,
Charlotte, NC
,
Aug. 21–24
, p. V007T06A037.
36.
Schulz
,
A.
,
Xu
,
J.
,
Zhu
,
B.
,
Zheng
,
C.
,
Grinspun
,
E.
, and
Matusik
,
W.
,
2017
, “
Interactive Design Space Exploration and Optimization for CAD Models
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
37.
Simpson
,
T. W.
,
Carlsen
,
D.
,
Malone
,
M.
, and
Kollat
,
J.
,
2011
, “Trade Space Exploration: Assessing the Benefits of Putting Designers “Back-in-the-Loop” during Engineering Optimization,”
Human-in-the-Loop Simulations
,
L.
Rothrock
and
S.
Narayanan
, eds.,
Springer
,
London
, pp.
131
152
. https://link.springer.com/chapter/10.1007/978-0-85729-883-6_7
38.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
39.
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
Design Strategy Network: A Deep Hierarchical Framework to Represent Generative Design Strategies in Complex Action Spaces
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021404
.
40.
Zhang
,
G.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
A Cautionary Tale About the Impact of AI on Human Design Teams
,”
Des. Stud.
,
72
, p.
100990
.
41.
Lipton
,
Z. C.
,
2018
, “
The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Important and Slippery
,”
Queue
,
16
(
3
), pp.
31
57
.
42.
Doshi-Velez
,
F.
, and
Kim
,
B.
,
2017
, “
Towards a Rigorous Science of Interpretable Machine Learning
.” Preprint arXiv:1702.08608.
43.
Linardatos
,
P.
,
Papastefanopoulos
,
V.
, and
Kotsiantis
,
S.
,
2020
, “
Explainable AI: A Review of Machine Learning Interpretability Methods
,”
Entropy
,
23
(
1
), p.
18
.
44.
Simonyan
,
K.
,
Vedaldi
,
A.
, and
Zisserman
,
A.
,
2013
, “
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
.” Preprint arXiv:1312.6034.
45.
Shrikumar
,
A.
,
Greenside
,
P.
, and
Kundaje
,
A.
,
2017
, “
Learning Important Features Through Propagating Activation Differences
,” International Conference on Machine Learning [PMLR, 70, 3145–3153 (2017)].
46.
Zeiler
,
M. D.
, and
Fergus
,
R.
,
2014
, “
Visualizing and Understanding Convolutional Networks
,”
13th European Conference on Computer Vision
,
Zurich, Switzerland
,
Sept. 6–12
, Springer, pp.
818
833
.
47.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
‘Why Should I Trust You?’ Explaining the Predictions of Any Classifier
,”
KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
August
, pp.
1135
1144
.
48.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
December
.
49.
Viros i Martin
,
A.
,
Selva
,
D.
, and
Gero
,
J. S.
,
2022
,
Design Computing and Cognition’20
,
Springer Cham
,
Switzerland AG
, pp.
655
665
.
50.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
51.
Chong
,
L.
,
Zhang
,
G.
,
Goucher-Lambert
,
K.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Confidence in Artificial Intelligence and in Themselves: The Evolution and Impact of Confidence on Adoption of AI Advice
,”
Comput. Hum. Behav.
,
127
, p.
107018
.
52.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Nolte
,
H.
,
Singh
,
H.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
When Faced With Increasing Complexity: The Effectiveness of Artificial Intelligence Assistance for Drone Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021701
.
53.
Bayrak
,
A. E.
, and
Sha
,
Z.
,
2021
, “
Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051401
.
54.
Song
,
B.
,
Zurita
,
N. F. S.
,
Zhang
,
G.
,
Stump
,
G.
,
Balon
,
C.
,
Miller
,
S. W.
,
Yukish
,
M.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Toward Hybrid Teams: A Platform to Understand Human–Computer Collaboration During the Design of Complex Engineered Systems
,”
Proceedings of the Design Society: DESIGN Conference
,
Cavtat, Croatia
,
May
, Vol. 1, pp.
1551
1560
.
55.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
, and
Killeen
,
T.
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
33rd Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 8–14
, Curran Associates Inc., pp.
8024
8035
.
56.
Biscani
,
F.
, and
Izzo
,
D.
,
2020
, “
A Parallel Global Multiobjective Framework for Optimization: Pagmo
,”
J. Open Source Softw.
,
5
(
53
), p.
2338
.
57.
Hitomi
,
N.
, and
Selva
,
D.
,
2016
, “
A Classification and Comparison of Credit Assignment Strategies in Multiobjective Adaptive Operator Selection
,”
IEEE Trans. Evol. Comput.
,
21
(
2
), pp.
294
314
.
58.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
59.
Jacob
,
F.
, and
Ted
,
B.
,
2007
,
A First Course in Finite Elements
,
Wiley
,
West Sussex
.
60.
Cox
,
H.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br.J. Appl. Phys.
,
3
(
3
), p.
72
.
61.
Chaudhari
,
A. M.
,
Suresh Kumar
,
R.
, and
Selva
,
D.
,
2021
, “
Supporting Designer Learning and Performance in Design Space Exploration: A Goal-Setting Approach
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)
,
Virtual, Online
,
Aug. 17–19
, American Society of Mechanical Engineers, p. V006T06A058.
62.
Prokhorov
,
V.
,
Shareghi
,
E.
,
Li
,
Y.
,
Pilehvar
,
M. T.
, and
Collier
,
N.
,
2019
, “
On the Importance of the Kullback–Leibler Divergence Term in Variational Autoencoders for Text Generation
.” Preprint arXiv:1909.13668.
63.
Kulesa
,
A.
,
Krzywinski
,
M.
,
Blainey
,
P.
, and
Altman
,
N.
,
2015
, “
Sampling Distributions and the Bootstrap
,”
Nature Methods
,
12
(
6
), pp.
477
478
.
64.
Goldstein
,
D. G.
, and
Gigerenzer
,
G.
,
2002
, “
Models of Ecological Rationality: The Recognition Heuristic
,”
Psychol. Rev.
,
109
(
1
), p.
75
.
65.
Gigerenzer
,
G.
, and
Todd
,
P. M.
,
1999
,
Simple Heuristics that Make Us Smart
,
Oxford University Press
,
New York
.
66.
Hirschi
,
N.
, and
Frey
,
D.
,
2002
, “
Cognition and Complexity: An Experiment on the Effect of Coupling in Parameter Design
,”
Res. Eng. Des.
,
13
(
3
), pp.
123
131
.
67.
Bastani
,
H.
,
Bastani
,
O.
, and
Sinchaisri
,
W. P.
,
2021
, “
Improving Human Decision-Making With Machine Learning
.” Preprint arXiv:2108.08454.
68.
Smith
,
B.
,
1982
, “
Reflection and Semantics in a Procedural Language
.” Technical Report, TR-272, MIT Laboratory for Computer Science.
69.
Chaudhari
,
A. M.
,
Gralla
,
E. L.
,
Szajnfarber
,
Z.
,
Grogan
,
P. T.
, and
Panchal
,
J. H.
,
2020
, “
Designing Representative Model Worlds to Study Socio-Technical Phenomena: A Case Study of Communication Patterns in Engineering Systems Design
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121403
.
You do not currently have access to this content.