Abstract

Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (∼O(104)) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design.

References

1.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
(
5
), pp.
114
173
.
2.
Soukoulis
,
C. M.
, and
Wegener
,
M.
,
2011
, “
Past Achievements and Future Challenges in the Development of Three-Dimensional Photonic Metamaterials
,”
Nat. Photonics.
,
5
(
9
), pp.
523
530
.
3.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), pp.
1
13
.
4.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
(
19
), p.
195901
.
5.
Kadic
,
M.
,
Bückmann
,
T.
,
Schittny
,
R.
, and
Wegener
,
M.
,
2013
, “
Metamaterials Beyond Electromagnetism
,”
Rep. Progress Phys.
,
76
(
12
), p.
126501
.
6.
Liu
,
R.
,
Ji
,
C.
,
Zhao
,
Z.
, and
Zhou
,
T.
,
2015
, “
Metamaterials: Reshape and Rethink
,”
Engineering
,
1
(
2
), pp.
179
184
.
7.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graphics (TOG)
,
36
(
4
), p.
1
.
8.
Liu
,
Z.
,
Zhu
,
D.
,
Rodrigues
,
S. P.
,
Lee
,
K.-T.
, and
Cai
,
W.
,
2018
, “
Generative Model for the Inverse Design of Metasurfaces
,”
Nano. Lett.
,
18
(
10
), pp.
6570
6576
.
9.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model With Semi-supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
.
10.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods. Appl. Mech. Eng.
,
372
(
12
), p.
113377
.
11.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
Metaset: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
12.
Wang
,
L.
,
van Beek
,
A.
,
Da
,
D.
,
Chan
,
Y.-C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Comp. Struct.
,
280
(
1
), p.
114949
.
13.
Chan
,
Y.-C.
,
Da
,
D.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
Remixing Functionally Graded Structures: Data-Driven Topology Optimization With Multiclass Shape Blending
,”
Struct. Multidiscipl. Optim.
,
65
(
5
), p.
135
.
14.
Da
,
D.
,
Chan
,
Y.-C.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
Data-driven and Topological Design of Structural Metamaterials for Fracture Resistance
,”
Extreme Mech. Lett.
,
50
(
1
), p.
101528
.
15.
Wang
,
L.
,
Boddapati
,
J.
,
Liu
,
K.
,
Zhu
,
P.
,
Daraio
,
C.
, and
Chen
,
W.
,
2022
, “
Mechanical Cloak via Data-Driven Aperiodic Metamaterial Design
,”
Proc. Natl. Acad. Sci, U.S.A.
,
119
(
13
).
16.
Wang
,
E. W.
,
Sell
,
D.
,
Phan
,
T.
, and
Fan
,
J. A.
,
2019
, “
Robust Design of Topology-Optimized Metasurfaces
,”
Opt. Mater. Express.
,
9
(
2
), pp.
469
482
.
17.
So
,
S.
,
Mun
,
J.
, and
Rho
,
J.
,
2019
, “
Simultaneous Inverse Design of Materials and Structures Via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core–Shell Nanoparticles
,”
ACS. Appl. Mater. Interfaces.
,
11
(
27
), pp.
24264
24268
.
18.
Gurbuz
,
C.
,
Kronowetter
,
F.
,
Dietz
,
C.
,
Eser
,
M.
,
Schmid
,
J.
, and
Marburg
,
S.
,
2021
, “
Generative Adversarial Networks for the Design of Acoustic Metamaterials
,”
J. Acoust. Soc. Am.
,
149
(
2
), pp.
1162
1174
.
19.
Sambasivan
,
N.
,
Kapania
,
S.
,
Highfill
,
H.
,
Akrong
,
D.
,
Paritosh
,
P.
, and
Aroyo
,
L. M.
,
2021
, “
Everyone Wants to Do the Model Work, Not the Data Work”: Data Cascades in High-Stakes Ai
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8–13
, pp.
1
15
.
20.
Wang
,
J.
,
Chen
,
W.
,
Da
,
D.
,
Fuge
,
M.
, and
Rai
,
R.
,
2022
, “
Ih-gan: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
396
(
6
).
21.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
22.
Strickland
,
E.
,
2022
, “
Andrew Ng, AI Minimalist: The Machine-Learning Pioneer Says Small is the New Big
,”
IEEE Spect.
,
59
(
4
).
23.
Strickland
,
E.
,
2022
, “
Andrew Ng, Ai Minimalist: The Machine-Learning Pioneer Says Small Is the New Big
,”
IEEE Spect.
,
59
(
4
), pp.
22
50
.
24.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,”
Foundations and Trends® in Machine Learning
,
5
(
2–3
).
25.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, QC, Canada
,
Sept. 29–Oct. 2
, Vol. 36223, pp.
539
548
.
26.
Liu
,
H.
,
Ong
,
Y.-S.
, and
Cai
,
J.
,
2018
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
393
416
.
27.
Jiang
,
J.
, and
Fan
,
J. A.
,
2019
, “
Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network
,”
Nano. Lett.
,
19
(
8
), pp.
5366
5372
.
28.
An
,
S.
,
Fowler
,
C.
,
Zheng
,
B.
,
Shalaginov
,
M. Y.
,
Tang
,
H.
,
Li
,
H.
,
Zhou
,
L.
,
Ding
,
J.
,
Agarwal
,
A. M.
,
Rivero-Baleine
,
C.
,
Kathleen
,
R. A.
,
Gu
,
T.
,
Hu
,
J.
, and
Zhang
,
H.
,
2019
, “
A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design
,”
ACS. Photonics.
,
6
(
12
), pp.
3196
3207
.
29.
An
,
S.
,
Zheng
,
B.
,
Tang
,
H.
,
Shalaginov
,
M. Y.
,
Zhou
,
L.
,
Li
,
H.
,
Kang
,
M.
,
Richardson
,
K. A.
,
Gu
,
T.
,
Hu
,
J.
,
Fowler
,
C.
, and
Zhang
,
H.
,
2021
, “
Multifunctional Metasurface Design With a Generative Adversarial Network
,”
Adv. Opt. Mater.
,
9
(
5
), p.
2001433
.
30.
Whiting
,
E. B.
,
Campbell
,
S. D.
,
Kang
,
L.
, and
Werner
,
D. H.
,
2020
, “
Meta-Atom Library Generation Via an Efficient Multi-objective Shape Optimization Method
,”
Optics Express
,
28
(
16
), pp.
24229
24242
.
31.
Branco
,
P.
,
Torgo
,
L.
, and
Ribeiro
,
R. P.
,
2016
, “
A Survey of Predictive Modeling on Imbalanced Domains
,”
ACM Comput. Surveys (CSUR)
,
49
(
2
), pp.
1
50
.
32.
Kazmi
,
I. K.
,
You
,
L.
, and
Zhang
,
J. J.
,
2013
, “
A Survey of 2d and 3d Shape Descriptors
,”
2013 10th International Conference Computer Graphics, Imaging and Visualization
,
Los Alamitos, CA
,
Aug. 6–8
, IEEE, pp.
1
10
.
33.
Vamvakas
,
G.
,
Gatos
,
B.
, and
Perantonis
,
S. J.
,
2010
, “
Handwritten Character Recognition Through Two-Stage Foreground Sub-Sampling
,”
Pattern Recognit.
,
43
(
8
), pp.
2807
2816
.
34.
Liu
,
Z.
,
Zhu
,
Z.
, and
Cai
,
W.
,
2020
, “
Topological Encoding Method for Data-Driven Photonics Inverse Design
,”
Optics Express
,
28
(
4
), pp.
4825
4835
.
35.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,”
arXiv preprint
. https://arxiv.org/abs/1312.6114
36.
Dai
,
A.
,
Ruizhongtai Qi
,
C.
, and
Nießner
,
M.
,
2017
, “
Shape Completion Using 3d-Encoder-Predictor Cnns and Shape Synthesis
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
5868
5877
.
37.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3d Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol. 59186, American Society of Mechanical Engineers, p. V02AT03A017.
38.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
39.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Metamaterial Design With Laplace-Beltrami Spectrum as “Shape-dna,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2613
2628
.
40.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv preprint arXiv:1412.6980
.
41.
Williams
,
C. K
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
42.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
43.
Van Beek
,
A.
,
Tao
,
S.
,
Plumlee
,
M.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Integration of Normative Decision-Making and Batch Sampling for Global Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031114
.
44.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems 25
,
Lake Tahoe, NV
,
Dec. 3–8
.
45.
Gartrell
,
M.
,
Paquet
,
U.
, and
Koenigstein
,
N.
,
2016
, “
Bayesian Low-Rank Determinantal Point Processes
,”
Proceedings of the 10th ACM Conference on Recommender Systems
,
Boston, MA
,
Sept. 15–19
, pp.
349
356
.
46.
Chao
,
W.-L.
,
Gong
,
B.
,
Grauman
,
K.
, and
Sha
,
F.
,
2015
, “
Large-Margin Determinantal Point Processes
,”
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence
,
Arlington, VA
,
July 12–16
.
47.
Affandi
,
R. H.
,
Fox
,
E.
,
Adams
,
R.
, and
Taskar
,
B.
,
2014
, “
Learning the Parameters of Determinantal Point Process Kernels
,”
International Conference on Machine Learning, PMLR
,
Bejing, China
,
June 22–24
, pp.
1224
1232
.
48.
Kulesza
,
A.
, and
Taskar
,
B.
,
2011
, “
k-dpps: Fixed-Size Determinantal Point Processes
,”
The 28th International Conference on Machine Learning
,
Bellevue, WA
,
June 28–July 2
.
49.
Affandi
,
R. H.
,
Kulesza
,
A.
, and
Fox
,
E. B.
,
2012
, “
Markov Determinantal Point Processes
,”
arXiv preprint
. https://arxiv.org/abs/1210.4850
50.
Borodin
,
A.
, and
Rains
,
E. M.
,
2005
, “
Eynard–mehta Theorem, Schur Process, and Their Pfaffian Analogs
,”
J. Stat. Phys.
,
121
(
3
), pp.
291
317
.
51.
Gartrell
,
M.
,
Paquet
,
U.
, and
Koenigstein
,
N.
,
2017
, “
Low-Rank Factorization of Determinantal Point Processes
,”
Thirty-First AAAI Conference on Artificial Intelligence.
,
San Francisco, CA
,
Feb. 4–9
.
52.
Rahimi
,
A.
, and
Recht
,
B.
,
2007
, “
Random Features for Large-Scale Kernel Machines
,”
Advances in Neural Information Processing Systems 20
,
Vancouver, BC, Canada
,
Dec. 3–5
.
53.
Rudin
,
W.
,
2017
,
Fourier Analysis on Groups
,
Courier Dover Publications
,
Mineola, NY
.
54.
Affandi
,
R. H.
,
Fox
,
E. B.
, and
Taskar
,
B.
,
2013
, “
Approximate Inference in Continuous Determinantal Point Processes
,”
arXiv preprint
. https://arxiv.org/abs/1311.2971
55.
Xia
,
L.
, and
Breitkopf
,
P.
,
2015
, “
Design of Materials Using Topology Optimization and Energy-Based Homogenization Approach in Matlab
,”
Struct. Multidiscipl. Optim.
,
52
(
6
), pp.
1229
1241
.
56.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
(
2
), pp.
488
495
.
57.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.
58.
Loh
,
W.-L.
,
1996
, “
On Latin Hypercube Sampling
,”
Ann. Stat.
,
24
(
5
), pp.
2058
2080
.
59.
van Beek
,
A.
,
Ghumman
,
U. F.
,
Munshi
,
J.
,
Tao
,
S.
,
Chien
,
T.
,
Balasubramanian
,
G.
,
Plumlee
,
M.
,
Apley
,
D.
, and
Chen
,
W.
,
2021
, “
Scalable Adaptive Batch Sampling in Simulation-Based Design With Heteroscedastic Noise
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031709
.
60.
Farooq Ghumman
,
U.
,
Iyer
,
A.
,
Dulal
,
R.
,
Munshi
,
J.
,
Wang
,
A.
,
Chien
,
T.
,
Balasubramanian
,
G.
, and
Chen
,
W.
,
2018
, “
A Spectral Density Function Approach for Active Layer Design of Organic Photovoltaic Cells
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111408
.
61.
Iyer
,
A.
,
Dulal
,
R.
,
Zhang
,
Y.
,
Ghumman
,
U. F.
,
Chien
,
T.
,
Balasubramanian
,
G.
, and
Chen
,
W.
,
2020
, “
Designing Anisotropic Microstructures With Spectral Density Function
,”
Comput. Mater. Sci.
,
179
(
6
), p.
109559
.
62.
Zhang
,
Y.
,
Tao
,
S.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2020
, “
A Latent Variable Approach to Gaussian Process Modeling With Qualitative and Quantitative Factors
,”
Technometrics
,
62
(
3
), pp.
291
302
.
63.
Rana
,
S.
,
Li
,
C.
,
Gupta
,
S.
,
Nguyen
,
V.
, and
Venkatesh
,
S.
,
2017
, “
High Dimensional Bayesian Optimization With Elastic Gaussian Process
,”
International Conference on Machine Learning, PMLR
,
Sydney, NSW, Australia
,
Aug. 6–11
, pp.
2883
2891
.
64.
Tripathy
,
R.
,
Bilionis
,
I.
, and
Gonzalez
,
M.
,
2016
, “
Gaussian Processes With Built-In Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation
,”
J. Comput. Phys.
,
321
(
17
), pp.
191
223
.
65.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,”
arXiv preprint
. https://arxiv.org/abs/1411.1784
66.
Sohn
,
K.
,
Lee
,
H.
, and
Yan
,
X.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Advances in Neural Information Processing Systems 28
,
Montreal, QC, Canada
,
Dec. 7–12
.
67.
Zheng
,
Y.
,
Zhang
,
Y.
, and
Zheng
,
Z.
,
2021
, “
Continuous Conditional Generative Adversarial Networks (cgan) With Generator Regularization
,”
arXiv preprint
. https://arxiv.org/abs/2103.14884
68.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Pcdgan: A Continuous Conditional Diverse Generative Adversarial Network for Inverse Design
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Virtual Event, Singapore
,
Aug. 14–18
, pp.
606
616
.
69.
Tao
,
S.
,
Van Beek
,
A.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2021
, “
Multi-Model Bayesian Optimization for Simulation-Based Design
,”
ASME J. Mech. Des.
,
143
(
11
), p.
111701
.
You do not currently have access to this content.