Abstract

Engineering design optimization problems often have two competing objectives as well as uncertainty. For these problems, quite often there is interest in obtaining feasibly robust optimum solutions. Feasibly robust here refers to solutions that are feasible under all uncertain conditions. In general, obtaining bi-objective feasibly robust solutions can be computationally expensive, even more so when the functions to evaluate are themselves computationally intensive. Although surrogates have been utilized to decrease the computational costs of such problems, there is limited usage of Bayesian frameworks on problems of multi-objective optimization under interval uncertainty. This article seeks to formulate an approach for the solution of these problems via the expected improvement Bayesian acquisition function. In this paper, a method is developed for iteratively relaxing the solutions to facilitate convergence to a set of non-dominated, robust optimal solutions. Additionally, a variation of the bi-objective expected improvement criterion is proposed to encourage variety and density of the robust bi-objective non-dominated solutions. Several examples are tested and compared against other bi-objective robust optimization approaches with surrogate utilization. It is shown that the proposed method performs well at finding robustly optimized feasible solutions with limited function evaluations.

References

1.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
2.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
University of Princeton
,
Princeton, NJ
.
3.
Calafiore
,
G. C.
,
2010
, “
Random Convex Programs
,”
SIAM J. Optim.
,
20
(
6
), pp.
3427
3464
.
4.
Rudnick-Cohen
,
E.
,
Herrmann
,
J. W.
, and
Azarm
,
S.
,
2020
, “
Non-convex Feasibility Robust Optimization Via Scenario Generation and Local Refinement
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051703
.
5.
Bertsimas
,
D.
, and
Sim
,
M.
,
2004
, “
The Price of Robustness
,”
Oper. Res.
,
52
(
1
), pp.
35
53
.
6.
Ramponi
,
F. A.
,
2018
, “
Consistency of the Scenario Approach
,”
SIAM J. Optim.
,
28
(
1
), pp.
135
162
.
7.
Bertsimas
,
D.
,
Nohadani
,
O.
, and
Teo
,
K. M.
,
2010
, “
Nonconvex Robust Optimization for Problems With Constraints
,”
INFORMS J. Comput.
,
22
(
1
), pp.
44
58
.
8.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
9.
Gelbart
,
M. A.
,
Snoek
,
J.
, and
Adams
,
R. P.
, “
Bayesian Optimization With Unknown Constraints
,”
arXiv:1403.5607 [cs, stat]
, Mar.
2014
, Accessed December 18, 2018. http://arxiv.org/abs/1403.5607
10.
Schonlau
,
M.
,
1997
, “
Computer Experiments and Global Optimization
,” Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada.
11.
Gardner
,
J. R.
,
Kusner
,
M. J.
,
Xu
,
Z.
,
Weinberger
,
K. Q.
, and
Cunningham
,
J. P.
,
2014
, “
Bayesian Optimization With Inequality Constraints
,”
Proceedings of the 31st International Conference on Machine Learning
,
Beijing, China
,
June 21–26
, pp.
937
945
.
12.
Björkman
,
M.
, and
Holmström
,
K.
,
2000
, “
Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions
,”
Opt. Eng.
,
1
(
4
), pp.
373
397
.
13.
Mockus
,
J.
,
Tiesis
,
V.
, and
Zilinskas
,
A.
,
1978
, “
The Application of Bayesian Methods for Seeking the Extremum
,”
Towards Global Optim.
,
2
, pp.
117
129
.
14.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Computat. Methods Eng.
,
26
(
1
), pp.
245
274
.
15.
Ray
,
T.
, and
Smith
,
W.
,
2006
, “
A Surrogate Assisted Parallel Multiobjective Evolutionary Algorithm for Robust Engineering Design
,”
Eng. Optim.
,
38
(
8
), pp.
997
1011
.
16.
Kania
,
R. J.
, and
Azarm
,
S.
,
2022
, “
Surrogate Feasibility Testing–Cutting for Single-Objective Robust Optimization Under Interval Uncertainty
,”
Eng. Optim.
, pp.
1
17
.
17.
Li
,
M.
,
Silva
,
R.
, and
Lowther
,
D.
,
2016
, “
Global and Local Meta-models for the Robust Design of Electrical Machines
,”
JAE
,
51
(
s1
), pp.
S89
S95
.
18.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des
,
133
(
6
), p.
061002
.
19.
Deb
,
K.
, and
Gupta
,
H.
,
2006
, “
Introducing Robustness in Multi-objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
.
20.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-objective Genetic Algorithms: Single- and Multi-disciplinary Applications
,”
Dissertation
,
University of Maryland
,
College Park, MD
, https://www.proquest.com/pqdtglobal/docview/304845941/8AB7A64477F140B2PQ/1?accountid=14696, Accessed April 7, 2016.
21.
Daulton
,
S.
,
Cakmak
,
S.
,
Balandat
,
M.
,
Osborne
,
M. A.
,
Zhou
,
E.
, and
Bakshy
,
E.
,
2022
, “
Robust Multi-objective Bayesian Optimization Under Input Noise
,”
Proceedings of the International Conference on Machine Learning
,
Baltimore, MD
,
July 17–23
.
22.
Zhang
,
J.
, and
Taflanidis
,
A. A.
,
2020
, “
Evolutionary Multi-objective Optimization Under Uncertainty Through Adaptive Kriging in Augmented Input Space
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011404
.
23.
Mendes
,
M. H. S.
,
Soares
,
G. L.
,
Coulomb
,
J.-L.
, and
Vasconcelos
,
J. A.
,
2013
, “
A Surrogate Genetic Programming Based Model to Facilitate Robust Multi-objective Optimization: A Case Study in Magnetostatics
,”
IEEE Trans. Magn.
,
49
(
5
), pp.
2065
2068
.
24.
Xia
,
B.
,
Ren
,
Z.
, and
Koh
,
C.-S.
,
2014
, “
Utilizing Kriging Surrogate Models for Multi-Objective Robust Optimization of Electromagnetic Devices
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
693
696
.
25.
Xie
,
T.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Shu
,
L.
,
Zhang
,
Y.
,
Meng
,
X.
, and
Wei
,
H.
,
2018
, “
Advanced Multi-objective Robust Optimization Under Interval Uncertainty Using Kriging Model and Support Vector Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041012
.
26.
Xia
,
H.
,
Jia
,
P.
, and
Ma
,
L.
,
2021
, “
Robust Multi-Objective Optimization for Gas Turbine Operation Based on Kriging Surrogate Model
,”
Proceedings of the 2021 40th Chinese Control Conference (CCC)
,
Shanghai, China
,
July 26–28
, p.
6704
.
27.
Zhou
,
Q.
,
Jiang
,
P.
,
Huang
,
X.
,
Zhang
,
F.
, and
Zhou
,
T.
,
2018
, “
A Multi-objective Robust Optimization Approach Based on Gaussian Process Model
,”
Struct. Multidisc. Optim.
,
57
(
1
), pp.
213
233
.
28.
Wang
,
J.
,
Shi
,
X.
, and
Qu
,
M.
,
2021
, “
Evolutionary Optimization of Robust Multi-objective Expensive Problems Assisted by Incremental Kriging Models
,”
Proceedings of the 2021 China Automation Congress (CAC)
,
Beijing, China
,
Oct. 22-24, 2021
.
29.
Siddall
,
J. N.
,
1982
,
Optimal Engineering Design: Principles and Applications
,
Marcel Dekker, Inc.
,
New York, NY
.
30.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2013
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011009
.
31.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
,
2008
, “
A Kriging Metamodel Assisted Multi-objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031401
.
32.
Knowles
,
J.
,
2006
, “
ParEGO A Hybrid Algorithm With Online Landscape Approximation for Expensive Multiobjective Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
10
(
1
), pp.
50
66
.
33.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
34.
Emmerich
,
M. T. M.
,
Deutz
,
A. H.
, and
Klinkenberg
,
J. W.
,
2011
, “
Hypervolume-Based Expected Improvement: Monotonicity Properties and Exact Computation
,”
Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC)
,
New Orleans, LA
,
June 5–8
, pp.
2147
2154
.
35.
Shu
,
L.
,
Jiang
,
P.
,
Shao
,
X.
, and
Wang
,
Y.
,
2020
, “
A New Multi-objective Bayesian Optimization Formulation With the Acquisition Function for Convergence and Diversity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091703
.
36.
Kania
,
R. J.
, and
Azarm
,
S.
,
2022
, “
Bi-Objective Surrogate Feasibility Robust Design Optimization Utilizing Expected Non-dominated Improvement With Relaxation
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
37.
Guerra Vázquez
,
F.
,
Rückmann
,
J.-J.
,
Stein
,
O.
, and
Still
,
G.
,
2008
, “
Generalized Semi-infinite Programming: A Tutorial
,”
J. Comput. Appl. Math.
,
217
(
2
), pp.
394
419
.
38.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
39.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statist. Sci.
,
4
(
4
), pp.
409
423
.
40.
Neal
,
R. M.
,
1996
,
Bayesian Learning for Neural Networks
,
Springer New York
,
New York, NY
.
41.
Balandat
,
M.
,
Karrer
,
B.
,
Jiang
,
D. R.
,
Daulton
,
S.
,
Letham
,
B.
,
Wilson
,
A. G.
, and
Bakshy
,
E.
,
2020
, “
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
,”
34th Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 6–12
, p.
15
.
42.
Sasena
,
M. J.
,
2002
,
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations, Dissertation, University of Michigan, Ann Arbor, MI
.
43.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al-Qasasv
,
N.
,
2009
, “
Improving Multi-objective Robust Optimization under Interval Uncertainty Using Worst Possible Point Constraint Cuts
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
193
203
.
44.
MATLAB (R2021b)
,
2022
, The Mathworks Inc.,
Natick, MA
.
45.
Tanaka
,
M.
,
Watanabe
,
H.
,
Furukawa
,
Y.
, and
Tanino
,
T.
,
1995
, “
GA-Based Decision Support System for Multicriteria Optimization
,”
Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century
,
Vancouver, BC, Canada
,
Oct. 22–25
, pp.
1556
1561
.
46.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
47.
Schmit
,
L. A.
,
1960
, “
Structural Design by Systematic Synthesis
,”
Proceedings of the 2nd Conference on Electronic Computation
,
New York, NY
.
48.
Gunawan
,
S
,
2004
, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective, and Feasibility Robust Design Optimization
,” Dissertation, University of Maryland,
College Park, MD
.
49.
Wu
,
J.
, and
Azarm
,
S.
,
2001
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.
50.
Schott
,
J. R.
,
1995
, “
Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization
,”
Dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
51.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.
You do not currently have access to this content.