Abstract

Engineering design often involves qualitative and quantitative design variables, which requires systematic methods for the exploration of these mixed-variable design spaces. Expensive simulation techniques, such as those required to evaluate optimization objectives in materials design applications, constitute the main portion of the cost of the design process and underline the need for efficient search strategies—Bayesian optimization (BO) being one of the most widely adopted. Although recent developments in mixed-variable Bayesian optimization have shown promise, the effects of dimensionality of qualitative variables have not been well studied. High-dimensional qualitative variables, i.e., with many levels, impose a large design cost as they typically require a larger dataset to quantify the effect of each level on the optimization objective. We address this challenge by leveraging domain knowledge about underlying physical descriptors, which embody the physics of the underlying physical phenomena, to infer the effect of unobserved levels that have not been sampled yet. We show that physical descriptors can be intuitively embedded into the latent variable Gaussian process approach—a mixed-variable GP modeling technique—and used to selectively explore levels of qualitative variables in the Bayesian optimization framework. This physics-informed approach is particularly useful when one or more qualitative variables are high dimensional (many-level) and the modeling dataset is small, containing observations for only a subset of levels. Through a combination of mathematical test functions and materials design applications, our method is shown to be robust to certain types of incomplete domain knowledge and significantly reduces the design cost for problems with high-dimensional qualitative variables.

References

1.
Huang
,
Y.
,
Zhao
,
H.
,
Wang
,
Y.
,
Ratcliff
,
T.
,
Breneman
,
C.
,
Brinson
,
L. C.
,
Chen
,
W.
, and
Schadler
,
L. S.
,
2017
, “
Predicting the Breakdown Strength and Lifetime of Nanocomposites Using a Multi-Scale Modeling Approach
,”
J. Appl. Phys.
,
122
(
6
), p.
065101
.
2.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
3.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
4.
Rasmussen
,
C. E.
,
2003
, “Gaussian Processes in Machine Learning,”
Advanced Lectures on Machine Learning
,
O.
Bousquet
,
U.
von Luxburg
, and
G.
Rätsch
, eds., Summer School on Machine Learning,
Springer
,
Berlin/Heidelberg
, pp.
63
71
.
5.
Iyer
,
A.
,
Zhang
,
Y.
,
Prasad
,
A.
,
Gupta
,
P.
,
Tao
,
S.
,
Wang
,
Y.
,
Prabhune
,
P.
,
Schadler
,
L. S.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2020
, “
Data Centric Nanocomposites Design Via Mixed-Variable Bayesian Optimization
,”
Mol. Syst. Des. Eng.
,
5
(
8
), pp.
1376
1390
.
6.
Özdemir
,
A.
,
2022
, “
A Fuzzy Mixed-Integer Robust Design Optimization Model to Obtain Optimum Settings of Both Qualitative and Quantitative Input Variables Under Uncertainty
,”
Eng. Optim.
, pp.
1
16
.
7.
Ozdemir
,
A.
, and
Cho
,
B. R.
,
2017
, “
Response Surface-Based Robust Parameter Design Optimization With Both Qualitative and Quantitative Variables
,”
Eng. Optim.
,
49
(
10
), pp.
1796
1812
.
8.
Özdemir
,
A.
, and
Turkoz
,
M.
,
2020
, “
Development of a D-Optimal Design-Based 0–1 Mixed-Integer Nonlinear Robust Parameter Design Optimization Model for Finding Optimum Design Factor Level Settings
,”
Comput. Ind. Eng.
,
149
, p.
106742
.
9.
Zhang
,
Y.
, and
Notz
,
W. I.
,
2015
, “
Computer Experiments With Qualitative and Quantitative Variables: A Review and Reexamination
,”
Qual. Eng.
,
27
(
1
), pp.
2
13
.
10.
Qian
,
P. Z. G.
,
Wu
,
H.
, and
Wu
,
C. J.
,
2008
, “
Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors
,”
Technometrics
,
50
(
3
), pp.
383
396
.
11.
McMillan
,
N. J.
,
Sacks
,
J.
,
Welch
,
W. J.
, and
Gao
,
F.
,
1999
, “
Analysis of Protein Activity Data by Gaussian Stochastic Process Models
,”
J. Pharm. Stat.
,
9
(
1
), pp.
145
160
.
12.
Himanen
,
L.
,
Geurts
,
A.
,
Foster
,
A. S.
, and
Rinke
,
P.
,
2019
, “
Data-Driven Materials Science: Status, Challenges, and Perspectives
,”
Adv. Sci.
,
6
(
21
), p.
1900808
.
13.
Cole
,
J. M.
,
2020
, “
A Design-to-Device Pipeline for Data-Driven Materials Discovery
,”
Acc. Chem. Res.
,
53
(
3
), pp.
599
610
.
14.
Balachandran
,
P. V.
,
Xue
,
D.
,
Theiler
,
J.
,
Hogden
,
J.
, and
Lookman
,
T.
,
2016
, “
Adaptive Strategies for Materials Design Using Uncertainties
,”
Sci. Rep.
,
6
(
1
), p.
19660
.
15.
Herbol
,
H. C.
,
Hu
,
W.
,
Frazier
,
P.
,
Clancy
,
P.
, and
Poloczek
,
M.
,
2018
, “
Efficient Search of Compositional Space for Hybrid Organic–Inorganic Perovskites Via Bayesian Optimization
,”
npj Comput. Mater.
,
4
(
1
), p.
51
.
16.
Yuan
,
R.
,
Tian
,
Y.
,
Xue
,
D.
,
Xue
,
D.
,
Zhou
,
Y.
,
Ding
,
X.
,
Sun
,
J.
, and
Lookman
,
T.
,
2019
, “
Accelerated Search for BaTiO3-Based Ceramics With Large Energy Storage at Low Fields Using Machine Learning and Experimental Design
,”
Adv. Sci.
,
6
(
21
), p.
1901395
.
17.
Shields
,
B. J.
,
Stevens
,
J.
,
Li
,
J.
,
Parasram
,
M.
,
Damani
,
F.
,
Alvarado
,
J. I. M.
,
Janey
,
J. M.
,
Adams
,
R. P.
, and
Doyle
,
A. G.
,
2021
, “
Bayesian Reaction Optimization as a Tool for Chemical Synthesis
,”
Nature
,
590
(
7844
), pp.
89
96
.
18.
Ueno
,
T.
,
Rhone
,
T. D.
,
Hou
,
Z.
,
Mizoguchi
,
T.
, and
Tsuda
,
K.
,
2016
, “
COMBO: An Efficient Bayesian Optimization Library for Materials Science
,”
Mater. Discov.
,
4
, pp.
18
21
.
19.
Ling
,
J.
,
Hutchinson
,
M.
,
Antono
,
E.
,
Paradiso
,
S.
, and
Meredig
,
B.
,
2017
, “
High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design With Well-Calibrated Uncertainty Estimates
,”
Integr. Mater. Manuf. Innov.
,
6
(
3
), pp.
207
217
.
20.
Lookman
,
T.
,
Balachandran
,
P. V.
,
Xue
,
D.
, and
Yuan
,
R.
,
2019
, “
Active Learning in Materials Science With Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design
,”
npj Comput. Mater.
,
5
(
1
), p.
21
.
21.
Zhang
,
Y.
,
Tao
,
S.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2019
, “
A Latent Variable Approach to Gaussian Process Modeling With Qualitative and Quantitative Factors
,”
Technometrics
,
62
(
3
), pp.
291
302
.
22.
Lawrence
,
N.
,
2003
, “
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
,”
Adv. Neural Inf. Process. Syst.
,
16
.
23.
Zhang
,
Y.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Bayesian Optimization for Materials Design With Mixed Quantitative and Qualitative Variables
,”
Sci. Rep.
,
10
(
1
), pp.
1
13
.
24.
Wang
,
Y.
,
Iyer
,
A.
,
Chen
,
W.
, and
Rondinelli
,
J. M.
,
2020
, “
Featureless Adaptive Optimization Accelerates Functional Electronic Materials Design
,”
Appl. Phys. Rev.
,
7
(
4
), p.
041403
.
25.
Iyer
,
A.
,
Zhang
,
Y.
,
Prasad
,
A.
,
Tao
,
S.
,
Wang
,
Y.
,
Schadler
,
L.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2019
, “
Data Centric Mixed Variable Bayesian Optimization for Materials Design
,”
ASME International Design Engineering Technical Conference
,
Anaheim, CA
,
Aug. 18–21
.
26.
Conti
,
S.
, and
O’Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plan. Inference
,
140
(
3
), pp.
640
651
.
27.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
28.
Mockus
,
J.
,
Tiesis
,
V.
, and
Zilinskas
,
A.
,
1978
, “The Application of Bayesian Methods for Seeking the Extremum,”
Towards Global Optimization, Vol. 2
,
Elsevier, North-Holland
, pp.
117
129
.
29.
Ahmed
,
F.
, and
Fuge
,
M.
,
2018
, “
Ranking Ideas for Diversity and Quality
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011101
.
30.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,”
Mach. Learn.
,
5
(
2–3
), pp.
123
286
.
31.
Bostanabad
,
R.
,
Kearney
,
T.
,
Tao
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2018
, “
Leveraging the Nugget Parameter for Efficient Gaussian Process Modeling
,”
Int. J. Numer. Methods Eng.
,
114
(
5
), pp.
501
516
.
32.
Iyer
,
A.
,
Dulal
,
R.
,
Zhang
,
Y.
,
Ghumman
,
U. F.
,
Chien
,
T.
,
Balasubramanian
,
G.
, and
Chen
,
W.
,
2020
, “
Designing Anisotropic Microstructures With Spectral Density Function
,”
Comput. Mater. Sci.
,
179
, p.
109559
.
33.
Chen
,
D.
, and
Torquato
,
S.
,
2018
, “
Designing Disordered Hyperuniform Two-Phase Materials With Novel Physical Properties
,”
Acta Mater.
,
142
, pp.
152
161
.
34.
Farooq Ghumman
,
U.
,
Iyer
,
A.
,
Dulal
,
R.
,
Munshi
,
J.
,
Wang
,
A.
,
Chien
,
T.
,
Balasubramanian
,
G.
, and
Chen
,
W.
,
2018
, “
A Spectral Density Function Approach for Active Layer Design of Organic Photovoltaic Cells
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111408
.
35.
Moharam
,
M.
,
Pommet
,
D. A.
,
Grann
,
E. B.
, and
Gaylord
,
T.
,
1995
, “
Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach
,”
J. Opt. Soc. Am. A
,
12
(
5
), pp.
1077
1086
.
36.
Emery
,
A. A.
,
Saal
,
J. E.
,
Kirklin
,
S.
,
Hegde
,
V. I.
, and
Wolverton
,
C.
,
2016
, “
High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications
,”
Chem. Mater.
,
28
(
16
), pp.
5621
5634
.
37.
Ward
,
L.
,
Dunn
,
A.
,
Faghaninia
,
A.
,
Zimmermann
,
N. E.
,
Bajaj
,
S.
,
Wang
,
Q.
,
Montoya
,
J.
, et al
,
2018
, “
Matminer: An Open Source Toolkit for Materials Data Mining
,”
Comput. Mater. Sci.
,
152
, pp.
60
69
.
You do not currently have access to this content.