Abstract

Power-split hybrid transmissions are the core components of power-split hybrid electric vehicles (HEVs), and the quest for a more energy-efficient and higher-performing power-split hybrid transmission has long been the focus of study. In contrast to previously published methodologies, this paper proposes a novel approach for directly synthesizing power-split hybrid transmissions that makes use of the results of previously synthesized planetary gear trains (PGTs) rather than necessitating a resynthesis of their PGTs. A new topological graph that can construct a bridge between the PGTs and power-split hybrid transmission has been developed, reducing the computational complexity in the synthesis process. The new topological graph is obtained by adding topological characteristics of the power-split hybrid transmission to the PGT graph. A standard structure matrix is proposed to further screen out all the isomorphic configurations. The present method can generate various types of multi-PGT hybrid transmissions while avoiding mechanical structural interference. The design process of configurations for power-split hybrid transmission with three-column PGTs (3-PGT) is used as an example to prove the rationality of the method.

References

1.
Zhao
,
Z.
,
Tang
,
P.
, and
Li
,
H.
,
2021
, “
Generation, Screening, and Optimization of Powertrain Configurations for Power-Split Hybrid Electric Vehicle: A Comprehensive Overview
,”
IEEE Trans. Transp. Electrif.
,
8
(
1
), pp.
325
344
.
2.
Burress
,
T. A.
,
Campbell
,
S. L.
,
Coomer
,
C.
,
Ayers
,
C. W.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H.-T.
,
2011
,
Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System
,
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
.
3.
Grewe
,
T. M.
,
Conlon
,
B. M.
, and
Holmes
,
A. G.
,
2007
, “
Defining the General Motors 2-Mode Hybrid Transmission
,”
SAE. Tech. Pap.
,
1
(
273
), pp.
1
15
.
4.
Schmidt
,
M. R.
,
1999
Two-Mode, Compound-Split Electro-Mechanical Vehicular Transmission
,” U.S. Patent No. 5,931,757.
5.
Schmidt
,
M. R.
,
Klemen
,
D.
,
Nitz
,
L. T.
, and
Holmes
,
A. G.
,
2005
, “
Two-Mode, Compound-Split, Hybrid Electro-Mechanical Transmission Having Four Fixed Ratios
,” U.S. Patent No. 6,953,409.
6.
Duhon
,
A. N.
,
Sevel
,
K. S.
,
Tarnowsky
,
S. A.
, and
Savagian
,
P. J.
,
2015
, “
Chevrolet Volt Electric Utilization
,”
SAE. Int. J. Altern. Powertrains.
,
4
(
2
):
269
276
.
7.
Yi
,
C.
,
Epureanu
,
B. I.
,
Hong
,
S.-K.
,
Ge
,
T.
, and
Yang
,
X. G.
,
2016
, “
Modeling, Control, and Performance of a Novel Architecture of Hybrid Electric Powertrain System
,”
Appl. Energy
,
178
, pp.
454
467
.
8.
Zhuang
,
W.
,
Zhang
,
X.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Rapid Configuration Design of Multiple-Planetary-Gear Power-Split Hybrid Powertrain via Mode Combination
,”
IEEE/ASME Trans. Mech.
,
21
(
6
), pp.
2924
2934
.
9.
Holmes
,
A. G.
, and
Schmidt
,
M. R.
,
2002
, “
Hybrid Electric Powertrain Including a Two-Mode Electrically Variable Transmission
,” U.S. Patent No. 6,478,705.
10.
Zhu
,
F.
,
Chen
,
L.
, and
Yin
,
C.
,
2012
, “
Design and Analysis of a Novel Multimode Transmission for a HEV Using a Single Electric Machine
,”
IEEE Trans. Vehicular Technol.
,
62
(
3
), pp.
1097
1110
.
11.
Dobrjanskyj
,
L.
, and
Freudenstein
,
F.
,
1967
, “
Some Applications of Graph Theory to the Structural Analysis of Mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
89
(
1
), pp.
153
158
.
12.
Buchsbaum
,
F.
, and
Freudenstein
,
F.
,
1970
, “
Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms
,”
J. Mech.
,
5
(
3
), pp.
357
392
.
13.
Ravisankar
,
R.
, and
Mruthyunjaya
,
T. S.
,
1985
, “
Computerized Synthesis of the Structure of Geared Kinematic Chains
,”
Mech. Mach. Theory
,
20
(
5
), pp.
367
387
.
14.
Tsai
,
L. W.
,
1987
, “
An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
109
(
3
), pp.
329
336
.
15.
Tsai
,
L. W.
, and
Lin
,
C. C.
,
1989
, “
The Creation of Nonfractionated, Two-Degree-of-Freedom Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
111
(
4
), pp.
524
529
.
16.
Chatterjee
,
G.
, and
Tsai
,
L. W.
,
1994
, “
Enumeration of Epicyclic-Type Automatic Transmission Gear Trains
,”
SAE. Trans.
,
103
(
6
), pp.
1415
1426
.
17.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
New York
.
18.
Hsieh
,
H. I.
, and
Tsai
,
L. W.
,
1996
, “
Kinematic Analysis of Epicyclic-Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
294
299
.
19.
Gao
,
M. F.
, and
Hu
,
J. B.
,
2018
, “
Kinematic Analysis of Planetary Gear Trains Based on Topology
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012302
.
20.
Peng
,
Z.-X.
,
Hu
,
J.-B.
,
Xie
,
T.-L.
, and
Liu
,
C.-W.
,
2015
, “
Design of Multiple Operating Degrees-of-Freedom Planetary Gear Trains With Variable Structure
,”
ASME J. Mech. Des.
,
137
(
9
), p.
093301
.
21.
Yang
,
W.
,
Ding
,
H.
,
Zi
,
B.
, and
Zhang
,
D.
,
2018
, “
New Graph Representation for Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012303
.
22.
Yang
,
W.
, and
Ding
,
H.
,
2019
, “
The Complete Set of 1-DOF Planetary Gear Trains With up to 9 Links
,”
ASME J. Mech. Des.
,
141
(
4
), p.
043301
.
23.
Shanmukhasundaram
,
V. R.
,
Rao
,
Y. V. D.
, and
Regalla
,
S. P.
,
2019
, “
Enumeration of Displacement Graphs of Epicyclic Gear Train From a Given Rotation Graph Using Concept of Building of Kinematic Units
,”
Mech. Mach. Theory
,
134
, pp.
393
424
.
24.
Shanmukhasundaram
,
V. R.
,
Rao
,
Y. V. D.
, and
Regalla
,
S. P.
,
2019
, “
Algorithms for Detection of Degenerate Structure in Epicyclic Gear Trains Using Graph Theory
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
11
), pp.
1
16
.
25.
Esmail
,
E. L.
,
2022
, “
A Matrix-Based Method for Detection of Degenerate Structures in Planetary Gear Trains
,”
Mech. Mach. Theory
,
175
, p.
104925
.
26.
Ngo
,
H. T.
, and
Yan
,
H. S.
,
2016
, “
Configuration Synthesis of Parallel Hybrid Transmissions
,”
Mech. Mach. Theory
,
97
, pp.
51
71
.
27.
Hoang
,
N. T.
, and
Yan
,
H. S.
,
2017
, “
Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems With Eight-Bar Mechanisms
,”
Energies
,
10
(
7
), p.
1044
.
28.
Ho
,
T. T.
, and
Hwang
,
S. J.
,
2019
, “
Configuration Synthesis of Two-Mode Hybrid Transmission Systems With Nine-Link Mechanisms
,”
Mech. Mach. Theory
,
142
, p.
103615
.
29.
Pei
,
H.
,
Hu
,
X.
,
Yang
,
Y.
,
Tang
,
X.
,
Hou
,
C.
, and
Cao
,
D.
,
2018
, “
Configuration Optimization for Improving Fuel Efficiency of Power Split Hybrid Powertrains With a Single Planetary Gear
,”
Appl. Energy
,
214
, pp.
103
116
.
30.
Deng
,
T.
,
Gan
,
Z.
,
Xu
,
H.
,
Wu
,
C.
,
Zhang
,
Y.
,
Liu
,
F.
,
Ding
,
Z.
, and
Chen
,
W.
,
2022
, “
Configuration Design and Screening of Multi-Mode Double-Planetary-Gears Hybrid Powertrains
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073301
. 5
31.
Xu
,
X.
,
Sun
,
H.
,
Liu
,
Y.
, and
Dong
,
P.
,
2019
, “
Automatic Enumeration of Feasible Configuration for the Dedicated Hybrid Transmission With Multi-Degree-of-Freedom and Multiplanetary Gear set
,”
ASME J. Mech. Des.
,
141
(
9
), p.
093301
.
32.
Cammalleri
,
M.
, and
Castellano
,
A.
,
2021
, “
Analysis of Hybrid Vehicle Transmissions With Any Number of Modes and Planetary Gearing: Kinematics, Power Flows, Mechanical Power Losses
,”
Mech. Mach. Theory
,
162
, p.
104350
.
33.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
.
34.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.
35.
Zhou
,
X.
,
Qin
,
D.
,
Yao
,
M.
, and
Xie
,
Z.
,
2020
, “
Representation, Generation, and Optimization Methodology of Hybrid Electric Vehicle Powertrain Architectures
,”
J. Cleaner Prod.
,
256
(
20
), p.
120711
.
36.
Zhuang
,
W.
,
Zhang
,
X.
,
Zhao
,
D.
,
Peng
,
H.
, and
Wang
,
L.
,
2016
, “
Optimal Design of Three-Planetary-Gear Power-Split Hybrid Powertrains
,”
Int. J. Autom. Technol.
,
17
(
1
), pp.
299
309
.
37.
Wang
,
W.
,
Song
,
R.
,
Guo
,
M.
, and
Liu
,
S.
,
2014
, “
Analysis on Compound-Split Configuration of Power-Split Hybrid Electric Vehicle
,”
Mech. Mach. Theory
,
78
, pp.
272
288
.
38.
Benford
,
H. L.
, and
Leising
,
M. B.
,
1981
, “
The Lever Analogy: A New Tool in Transmission Analysis
,”
SAE. Trans.
,
90
(
1
), pp.
429
437
.
39.
Conlon
,
B.
,
2005
, “
Comparative Analysis of Single and Combined Hybrid Electrically Variable Transmission Operating Modes
,”
SAE. Trans.
,
114
(
6
), pp.
1265
1275
.
40.
Yang
,
H.
,
Cho
,
S.
,
Kim
,
N.
,
Lim
,
W.
, and
Cha
,
S.-W.
,
2007
, “
Analysis of Planetary Gear Hybrid Powertrain System Part 1
,”
Int. J. Autom. Technol.
,
8
(
6
), pp.
771
780
.
41.
Ross
,
C. S.
, and
Route
,
W. D.
,
1991
, “
A Method for Selecting Parallel-Connected, Planetary Gear Train Arrangements for Automotive Automatic Transmissions
,”
SAE. Trans.
,
100
(
6
), pp.
1765
1774
.
42.
Sun
,
H.
,
Xu
,
X.
,
Liu
,
Y.
,
Dong
,
P.
,
Wang
,
S.
, and
Ma
,
M.
,
2021
, “
Mechanical Structural Interference Detection for Dedicated Hybrid Transmissions
,”
ASME J. Mech. Des.
,
143
(
9
), p.
093401
.
43.
Kim
,
J.
,
Kang
,
J.
,
Kim
,
Y.
,
Kim
,
T.
,
Min
,
B.
, and
Kim
,
H.
,
2010
, “
Design of Power Split Transmission: Design of Dual Mode Power Split Transmission
,”
Int. J. Autom. Technol.
,
11
(
1
), pp.
565
571
.
You do not currently have access to this content.