Abstract

Recently, online user-generated data have emerged as a valuable source for consumer product research. However, most studies have neglected the brand effect, although it is a significant factor in conventional market research. This paper demonstrates the importance of brands in data-driven design using online reviews. Specifically, this study utilizes game theory and suggests a game setting representing market competition. Elements of the game are determined based on online data analysis. The proposed approach consists of four stages. The first stage divides online customers into different segments and analyzes them to extract the feature importance of each brand in each segment. The importance is based on the positive term frequency of features, and it becomes the customer’s partial utility for each feature. The second stage defines the specification of product candidates and calculates their costs. This study refers to real market datasets (bill of materials) available online. At this point, the game is all set. The third stage finds the Nash equilibrium of the designed game, and the final stage compares the optimal strategy for a product portfolio with and without brand consideration. The suggested approach was tested on smartphone reviews from Amazon. The result shows that the lack of brand consideration leads a company to choose a non-optimal product strategy, illustrating the significance of the brand factor.

References

1.
Oh
,
T. T.
,
Keller
,
K. L.
,
Neslin
,
S. A.
,
Reibstein
,
D. J.
, and
Lehmann
,
D. R.
,
2020
, “
The Past, Present, and Future of Brand Research
,”
Mark. Lett.
,
31
(
2
), pp.
151
162
.
2.
Aaker
,
D. A.
,
2012
, “
Win the Brand Relevance Battle and Then Build Competitor Barriers
,”
Calif. Manage. Rev.
,
54
(
2
), pp.
43
57
.
3.
Na
,
W. B.
,
Marshall
,
R.
, and
Keller
,
K. L.
,
1999
, “
Measuring Brand Power: Validating a Model for Optimizing Brand Equity
,”
J. Prod. Brand. Manage.
,
8
(
3
), pp.
170
184
.
4.
Forbes
,
2020
, “
The World’s Most Valuable Brands
,” https://www.forbes.com/powerful-brands/list/3/
5.
Businesswire
,
2022
, “
Hp Sets Its Sights on Apple in the PC Industry, Customers Remain Dissatisfied With Household Appliances, ACSI Data Show
,” https://www.businesswire.com/news/home/20210921005181/en
6.
Help
,
S. T.
,
2022
, “
Top 10 Market Research Companies
,” https://www.softwaretestinghelp.com/market-research-companies/
7.
Rekettye
,
G.
, and
Liu
,
J.
,
2001
, “
Segmenting the Hungarian Automobile Market Brand Using Perceptual and Value Mapping
,”
J. Target. Meas. Anal. Mark.
,
9
(
3
), pp.
241
253
.
8.
Kim
,
H. H. M.
,
Liu
,
Y.
,
Wang
,
C. C.
, and
Wang
,
Y.
,
2017
, “
Data-Driven Design (D3)
,”
ASME J. Mech. Des.
,
139
(
11
), p.
110301
.
9.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
.
10.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Automated Keyword Filtering in Latent Dirichlet Allocation for Identifying Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
084501
.
11.
Yang
,
B.
,
Liu
,
Y.
,
Liang
,
Y.
, and
Tang
,
M.
,
2019
, “
Exploiting User Experience From Online Customer Reviews for Product Design
,”
Int. J. Inf. Manage.
,
46
(
Jun
), pp.
173
186
.
12.
Chaklader
,
R.
, and
Parkinson
,
M. B.
,
2017
, “
Data-Driven Sizing Specification Utilizing Consumer Text Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111406
.
13.
Park
,
S.
,
Joung
,
J.
, and
Kim
,
H.
,
2023
, “
Spec Guidance for Engineering Design Based on Data Mining and Neural Networks
,”
Comput. Ind.
,
144
, p.
103790
.
14.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Automated Discovery of Lead Users and Latent Product Features by Mining Large Scale Social Media Networks
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071402
.
15.
Goldberg
,
D. M.
, and
Abrahams
,
A. S.
,
2022
, “
Sourcing Product Innovation Intelligence From Online Reviews
,”
Decis. Support Syst.
,
157
, p.
113751
.
16.
Bertoni
,
A.
, “
Data-Driven Design in Concept Development: Systematic Review and Missed Opportunities
,”
16th International Design Conference
,
Cavtat, Croatia
,
Oct. 26–29
, Vol. 1, Cambridge University Press, pp.
101
110
.
17.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G. S.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,”
27th Annual Conference on Neural Information Processing Systems
,
Lake Tahoe, NV
,
Dec. 5–10
.
18.
Wang
,
M.
, and
Chen
,
W.
,
2015
, “
A Data-Driven Network Analysis Approach to Predicting Customer Choice Sets for Choice Modeling in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071410
.
19.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2012
,
Decision-Based Design
,
Springer
,
London
.
20.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
21.
Roth
,
A. E.
,
1988
,
The Shapley Value
,
Cambridge University Press
,
Cambridge
.
22.
Lundberg
,
S. M.
, and
Lee
,
S.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Thirty-first Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
23.
Jin
,
J.
,
Liu
,
Y.
,
Ji
,
P.
, and
Liu
,
H.
,
2016
, “
Understanding Big Consumer Opinion Data for Market-Driven Product Design
,”
Int. J. Prod. Res.
,
54
(
10
), pp.
3019
3041
.
24.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
25.
Nuortimo
,
K.
, and
Harkonen
,
J.
,
2019
, “
Establishing an Automated Brand Index Based on Opinion Mining: Analysis of Printed and Social Media
,”
J. Mark. Anal.
,
7
(
3
), pp.
141
151
.
26.
Alzate
,
M.
,
Arce-Urriza
,
M.
, and
Cebollada
,
J.
,
2022
, “
Mining the Text of Online Consumer Reviews to Analyze Brand Image and Brand Positioning
,”
J. Retail. Consum. Serv.
,
67
, p.
102989
.
27.
Sadeghi
,
A.
, and
Zandieh
,
M.
,
2011
, “
A Game Theory-Based Model for Product Portfolio Management in a Competitive Market
,”
Expert Syst. Appl.
,
38
(
7
), pp.
7919
7923
.
28.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Phrase Embedding and Clustering for Sub-Feature Extraction From Online Data
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054501
.
29.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Finding Social Networks Among Online Reviewers for Customer Segmentation
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121703
.
30.
Farrell
,
R. S.
, and
Simpson
,
T. W.
,
2008
, “
A Method to Improve Platform Leveraging in a Market Segmentation Grid for an Existing Product Line
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031403
.
31.
Suryadi
,
D.
, and
Kim
,
H. M.
,
2019
, “
A Data-Driven Methodology to Construct Customer Choice Sets Using Online Data and Customer Reviews
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111103
.
32.
Hutto
,
C.
, and
Gilbert
,
E.
, “
Vader: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text
,”
The Eighth International AAAI Conference on Weblogs and Social Media
,
Ann Arbor, MI
,
June 1–4
.
33.
Blondel
,
V. D.
,
Guillaume
,
J.-L.
,
Lambiotte
,
R.
, and
Lefebvre
,
E.
,
2008
, “
Fast Unfolding of Communities in Large Networks
,”
J. Stat. Mech.: Theory Exp.
,
2008
(
10
), p.
P10008
.
34.
Dinh
,
T. N.
,
Li
,
X.
, and
Thai
,
M. T.
,
2015
, “
Network Clustering Via Maximizing Modularity: Approximation Algorithms and Theoretical Limits
,”
2015 IEEE International Conference on Data Mining
,
Atlantic City, NJ
,
Nov. 14–17
.
35.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Optimal Modular Remanufactured Product Configuration and Harvesting Planning for End-of-Life Products
,”
J. Mech. Des.
,
144
(
4
), p.
042001
.
36.
Lewis
,
K.
, and
Mistree
,
F.
, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Sacramento, CA
,
Sept. 14–17
.
37.
Sha
,
Z.
,
Kannan
,
K. N.
, and
Panchal
,
J. H.
,
2015
, “
Behavioral Experimentation and Game Theory in Engineering Systems Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051405
.
38.
Bayrak
,
A. E.
, and
Sha
,
Z.
,
2021
, “
Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051401
.
39.
Facchinei
,
F.
, and
Pang
,
J.-S.
,
2010
, “12 Nash Equilibria: The Variational Approach,”
Convex Optimization in Signal Processing and Digital Communication
,
Cambridge University Press
,
New York
, pp.
443–493
.
40.
Gabriel
,
S. A.
,
Conejo
,
A. J.
,
Fuller
,
J. D.
,
Hobbs
,
B. F.
, and
Ruiz
,
C.
,
2012
,
Complementarity Modeling in Energy Markets
,
Springer Science & Business Media
,
New York
.
41.
Fudenberg
,
D.
, and
Tirole
,
J.
,
1991
,
Game Theory
,
MIT Press
,
Cambridge, MA
.
42.
Counterpoint
,
T.
,
2022
, “
US Smartphone Market Share: By Quarter
,” https://www.counterpointresearch.com/us-market-smartphone-share/
44.
Businesswire
,
2018
, “
Galaxy S9+ Materials Cost $43 More Than Previous Versions, IHS Markit Teardown Shows
,” https://www.businesswire.com/news/home/20180321005364/en
45.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance—Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
46.
Reimers
,
N.
, and
Gurevych
,
I.
,
2019
, “
Sentence-Bert: Sentence Embeddings Using Siamese Bert-Networks
,” preprint arXiv:1908.10084.
You do not currently have access to this content.