Abstract

Along with the development of surrogate models, there is a growing need to use surrogate models instead of computationally intensive simulations to estimate real system responses. Compared with individual surrogate models, the ensemble of surrogate models is gradually drawing more attention due to its better applicability and robustness. Thus, this paper proposes an adaptive median-based ensemble of surrogate models (MID-ESMs). At first, construct a reference model using the median of the predicted values of several surrogate models. Then an adaptive weight ensemble strategy is proposed based on the reference model to integrate global trends and local features. Thirty test functions and a practical engineering case are used to evaluate the model performance. In addition, this paper investigates the effect of homoscedasticity noise and test functions of different dimensions on the proposed model. The results demonstrate that MID-ESM has higher accuracy and robustness than individual surrogate models and other ensembles of surrogate models, offering better applicability in engineering problems.

References

1.
Han
,
Z.-H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
2.
Qian
,
J.
,
Yi
,
J.
,
Cheng
,
Y.
,
Liu
,
J.
, and
Zhou
,
Q.
,
2020
, “
A Sequential Constraints Updating Approach for Kriging Surrogate Model-Assisted Engineering Optimization Design Problem
,”
Eng. Comput.
,
36
(
3
), pp.
993
1009
.
3.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
4.
Bouhlel
,
M. A.
, and
Martins
,
J. R. R. A.
,
2018
, “
Gradient-Enhanced Kriging for High-Dimensional Problems
,”
Eng. Comput.
,
35
(
1
), pp.
157
173
.
5.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscipl. Optim.
,
52
(
1
), pp.
55
70
.
6.
Jiang
,
P.
,
Zhang
,
Y.
,
Zhou
,
Q.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2018
, “
An Adaptive Sampling Strategy for Kriging Metamodel Based on Delaunay Triangulation and TOPSIS
,”
Appl. Intell.
,
48
(
6
), pp.
1644
1656
.
7.
Hariri-Ardebili
,
M. A.
,
2018
, “
MCS-Based Response Surface Metamodels and Optimal Design of Experiments for Gravity Dams
,”
Struct. Infrastruct. E
,
14
(
12
), pp.
1641
1663
.
8.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2017
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Methods Eng.
,
26
(
1
), pp.
245
274
.
9.
Assari
,
P.
, and
Dehghan
,
M.
,
2017
, “
The Numerical Solution of Two-Dimensional Logarithmic Integral Equations on Normal Domains Using Radial Basis Functions With Polynomial Precision
,”
Eng. Comput.
,
33
(
4
), pp.
853
870
.
10.
Liu
,
X.
,
Liu
,
X.
,
Zhou
,
Z.
, and
Hu
,
L.
,
2021
, “
An Efficient Multi-objective Optimization Method Based on the Adaptive Approximation Model of the Radial Basis Function
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1385
1403
.
11.
Urquhart
,
M.
,
Ljungskog
,
E.
, and
Sebben
,
S.
,
2020
, “
Surrogate-Based Optimisation Using Adaptively Scaled Radial Basis Functions
,”
Appl. Soft Comput.
,
88
, p.
106050
.
12.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2004
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
13.
Jiang
,
C.
,
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2018
, “
A Two-Stage Support Vector Regression Assisted Sequential Sampling Approach for Global Metamodeling
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1657
1672
.
14.
Prado
,
D. R.
,
López-Fernández
,
J. A.
,
Arrebola
,
M.
, and
Goussetis
,
G.
,
2021
, “
On the Use of the Angle of Incidence in Support Vector Regression Surrogate Models for Practical Reflectarray Design
,”
IEEE Trans. Antennas Propag.
,
69
(
3
), pp.
1787
1792
.
15.
Lim
,
D.
,
Ong
,
Y.-S.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2007
, “
A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Evolutionary Computation
,”
Proceedings of the 9th Annual Conferences on Genetic Programming
,
London, UK, July 7–11
,
ACM
, pp.
1288
1295
.
16.
Cheng
,
K.
, and
Lu
,
Z.
,
2020
, “
Structural Reliability Analysis Based on Ensemble Learning of Surrogate Models
,”
Struct. Saf.
,
83
, p.
101905
.
17.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscipl. Optim.
,
33
(
3
), pp.
199
216
.
18.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Salager
,
J.-L.
,
2005
, “
An Optimization Methodology of Alkaline–Surfactant–Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Pet. Sci. Eng.
,
47
(
3
), pp.
197
208
.
19.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscipl. Optim.
,
39
(
4
), pp.
439
457
.
20.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2008
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
279
294
.
21.
Ferreira
,
W. G.
, and
Serpa
,
A. L.
,
2016
, “
Ensemble of Metamodels: The Augmented Least Squares Approach
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1019
1046
.
22.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Meng
,
J.
, and
Yang
,
S.
,
2016
, “
Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions
,”
AIAA J.
,
54
(
10
), pp.
3117
3133
.
23.
Zhang
,
S.
,
Pang
,
Y.
,
Liang
,
P.
, and
Song
,
X.
,
2022
, “
On the Ensemble of Surrogate Models by Minimum Screening Index
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071707
.
24.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscipl. Optim.
,
42
(
6
), pp.
879
896
.
25.
Lee
,
Y.
, and
Choi
,
D.-H.
,
2014
, “
Pointwise Ensemble of Meta-models Using v Nearest Points Cross-Validation
,”
Struct. Multidiscipl. Optim.
,
50
(
3
), pp.
383
394
.
26.
Zhang
,
J.
,
Yue
,
X.
,
Qiu
,
J.
,
Zhang
,
M.
, and
Wang
,
X.
,
2021
, “
A Unified Ensemble of Surrogates With Global and Local Measures for Global Metamodelling
,”
Eng. Optim.
,
53
(
3
), pp.
474
495
.
27.
Ye
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2020
, “
An Optimal Pointwise Weighted Ensemble of Surrogates Based on Minimization of Local Mean Square Error
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
529
542
.
28.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
223
238
.
29.
Zhang
,
J.
,
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2013
, “
Adaptive Hybrid Surrogate Modeling for Complex Systems
,”
AIAA J.
,
51
(
3
), pp.
643
656
.
30.
Xueguan
,
S.
,
Liye
,
L.
,
Jieling
,
L.
,
Wei
,
S.
, and
Jie
,
Z.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
.
31.
Stone
,
M.
,
1974
, “
Cross-Validation and Multinomial Prediction
,”
Biometrika
,
61
(
3
), pp.
509
515
.
32.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch K-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
33.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
.
34.
Viana
,
F. A. C.
,
2010
,
SURROGATES Toolbox User’s Guide
,
Gainesville, FL
.
35.
Talgorn
,
B.
,
Le Digabel
,
S.
, and
Kokkolaras
,
M.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021405
.
36.
Gramacy
,
R. B.
, and
Lee
,
H. K. H.
,
2010
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Stat. Comput.
,
22
(
3
), pp.
713
722
.
37.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.
38.
Park
,
J.-S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
,
39
(
1
), pp.
95
111
.
39.
Ravikumar
,
M.
, and
Chattopadhyay
,
A. J. C.
,
1999
, “
Integral Analysis of Conveyor Pulley Using Finite Element Method
,”
Comput. Struct.
,
71
(
3
), pp.
303
332
.
You do not currently have access to this content.