Abstract

Generative design (GD) techniques have been proposed to generate numerous designs at early design stages for ideation and exploration purposes. Previous research on GD using deep neural networks required tedious iterations between the neural network and design optimization, as well as post-processing to generate functional designs. Additionally, design constraints such as volume fraction could not be enforced. In this paper, a two-stage non-iterative formulation is proposed to overcome these limitations. In the first stage, a conditional generative adversarial network (cGAN) is utilized to control design parameters. In the second stage, topology optimization (TO) is embedded into cGAN (cGAN + TO) to ensure that desired functionality is achieved. Tests on different combinations of loss terms and different parameter settings within topology optimization demonstrated the diversity of generated designs. Further study showed that cGAN + TO can be extended to different load and boundary conditions by modifying these parameters in the second stage of training without having to retrain the first stage. Results demonstrate that GD can be realized efficiently and robustly by cGAN+TO.

References

1.
Wang
,
Z.
, and
Rosen
,
D.
,
2023
, “
Manufacturing Process Classification Based on Distance Rotationally Invariant Convolutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051004
.
2.
Wang
,
Z.
, and
Rosen
,
D.
,
2022
, “
Manufacturing Process Classification Based on Heat Kernel Signature and Convolutional Neural Networks
,”
J. Intell. Manuf
.
3.
Zhao
,
C.
,
Dinar
,
M.
, and
Melkote
,
S. N.
,
2020
, “
Automated Classification of Manufacturing Process Capability Utilizing Part Shape, Material, and Quality Attributes
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021011
.
4.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
5.
Zhao
,
J.
,
Mathieu
,
M.
, and
LeCun
,
Y.
,
2017
, “
Energy-Based Generative Adversarial Network
,”
International Conference on Learning Representations
,
Palais des Congrès Neptune, Toulon, France
,
Apr. 24–26
.
6.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Montreal, Quebec, Canada
,
Dec. 8–13
.
7.
Berthelot
,
D.
,
Schumm
,
T.
, and
Metz
,
L.
Began: Boundary Equilibrium Generative Adversarial Networks
,” arXiv preprint arXiv:1703.10717, 2017.
8.
Zhang
,
H.
,
Goodfellow
,
I.
,
Metaxas
,
D.
, and
Odena
,
A.
,
2019
, “
Self-Attention Generative Adversarial Networks
,”
Proceedings of the International Conference on Machine Learning
,
Long Beach, CA
,
June 9–15
, PMLR, pp.
7354
7363
.
9.
Brock
,
A.
,
Donahue
,
J.
, and
Simonyan
,
K.
,
2018
, “
Large Scale GAN Training for High Fidelity Natural Image Synthesis
,”
International Conference on Learning Representations
,
Vancouver, BC, Canada
,
Apr. 30–May 3
.
10.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1125
1134
.
11.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
.
12.
Karras
,
T.
,
Laine
,
S.
, and
Aila
,
T.
,
2019
, “
A Style-Based Generator Architecture for Generative Adversarial Networks
,”
Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
.
13.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
214
223
.
14.
Mao
,
X.
,
Li
,
Q.
,
Xie
,
H.
,
Lau
,
R. Y.
,
Wang
,
Z.
, and
Paul Smolley
,
S.
,
2017
, “
Least Squares Generative Adversarial Networks
,”
International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
.
15.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
16.
Kohn
,
R. V.
,
1986
, “
Optimal Design and Relaxation of Variational Problems, Part I
,”
Comm. Pure Appl. Math.
,
39
, pp.
1
25
.
17.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
50
(
6
), pp.
1175
1196
.
18.
Zhao
,
C.
,
Dinar
,
M.
, and
Melkote
,
S. N.
,
2022
, “
A Data-Driven Framework for Learning the Capability of Manufacturing Process Sequences
,”
J. Manuf. Syst.
,
64
, pp.
68
80
.
19.
Yan
,
X.
, and
Melkote
,
S.
,
2023
, “
Automated Manufacturability Analysis and Machining Process Selection Using Deep Generative Model and Siamese Neural Networks
,”
J. Manuf. Syst.
,
67
, pp.
57
67
.
20.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Oct. 5–9
.
21.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
22.
Zhang
,
Y.
,
Peng
,
B.
,
Zhou
,
X.
,
Xiang
,
C.
, and
Wang
,
D.
,
2019
, “
A Deep Convolutional Neural Network for Topology Optimization with Strong Generalization Ability
,”
arXiv preprint arXiv:1901.07761
. https://arxiv.org/abs/1901.07761
23.
Deng
,
C.
,
Wang
,
Y.
,
Qin
,
C.
,
Fu
,
Y.
, and
Lu
,
W.
,
2022
, “
Self-Directed Online Machine Learning for Topology Optimization
,”
Nat. Commun.
,
13
(
1
), p.
388
.
24.
Wang
,
D.
,
Xiang
,
C.
,
Pan
,
Y.
,
Chen
,
A.
,
Zhou
,
X.
, and
Zhang
,
Y.
,
2022
, “
A Deep Convolutional Neural Network for Topology Optimization With Perceptible Generalization Ability
,”
Eng. Optim.
,
54
(
6
), pp.
973
988
.
25.
Lee
,
C.
, and
Ha
,
W.
,
2021
, “
Optimal Design of IPM Rotor Shape Using Generative Adversarial Networks
,”
International Conference on Electrical Machines and Systems
,
HICO, Gyeongju, South Korea
,
Oct. 31.–Nov. 3
.
26.
Ntintakis
,
I.
,
Stavroulakis
,
G. E.
,
Sfakianakis
,
G.
, and
Fiotodimitrakis
,
N.
,
2022
, “
Utilizing Generative Design for Additive Manufacturing
,”
Proceedings of the Recent Advances in Manufacturing Processes and Systems
,
Singapore
.
27.
Zheng
,
S.
,
He
,
Z.
, and
Liu
,
H.
,
2021
, “
Generating Three-Dimensional Structural Topologies via a U-Net Convolutional Neural Network
,”
Thin-Walled Struct.
,
159
, p.
107263
.
28.
Xiang
,
C.
,
Wang
,
D.
,
Pan
,
Y.
,
Chen
,
A.
,
Zhou
,
X.
, and
Zhang
,
Y.
,
2022
, “
Accelerated Topology Optimization Design of 3D Structures Based on Deep Learning
,”
Struct. Multidiscipl. Optim.
,
65
(
3
), p.
99
.
29.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p. 031703.
30.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p. 111405.
31.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2022
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,”
Comput.-Aided Des.
,
146
, p.
103225
.
32.
Yamasaki
,
S.
,
Yaji
,
K.
, and
Fujita
,
K.
,
2021
, “
Data-Driven Topology Design Using a Deep Generative Model
,”
Struct. Multidiscipl. Optim.
,
64
(
3
), pp.
1401
1420
.
33.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2019
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
34.
Yoo
,
S.
,
Lee
,
S.
,
Kim
,
S.
,
Hwang
,
K. H.
,
Park
,
J. H.
, and
Kang
,
N.
,
2021
, “
Integrating Deep Learning Into CAD/CAE System: Generative Design and Evaluation of 3D Conceptual Wheel
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2725
2747
.
35.
Woldseth
,
R. V.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
On the Use of Artificial Neural Networks in Topology Optimisation
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), p.
294
.
You do not currently have access to this content.