Abstract

Remotely measuring social impact indicators of products in developing countries can enable researchers and practitioners to make informed decisions relative to the design of products, improvement of products, or social interventions that can help improve the lives of individuals. Collecting data for determining social impact indicators for long-term periods through manual methods can be cost prohibitive and preclude collection of data that could provide valuable insights. Using in situ sensors remotely deployed and paired with deep learning can enable practitioners to collect long-term data that provide insights that can be as beneficial as data collected through manual observation but with the cost and continuity made possible by sensor devices. Postulates related to successfully developing and deploying this approach have been identified and their usefulness demonstrated through an example application related to a water hand pump in Uganda in which sensor data were collected over a five-month span. Following these postulates can help researchers and practitioners avoid potential issues that could be encountered without them.

References

1.
United Nations Development Programme Growing Inclusive Markets Initiative
,
2008
,
Creating Value for All: Strategies for Doing Business With the Poor
,
United Nations Development Programme
,
New Yor
k.
2.
Wood
,
A. E.
, and
Mattson
,
C. A.
,
2016
, “
Design for the Developing World: Common Pitfalls and How to Avoid Them
,”
ASME J. Mech. Des.
,
138
(
3
), p.
31101
.
3.
Jagtap
,
S.
,
2019
, “
Design and Poverty: A Review of Contexts, Roles of Poor People, and Methods
,”
Res. Eng. Des.
,
30
(
1
), pp.
41
62
.
4.
Mudgal
,
A. K.
,
1997
, “
India Handpump Revolution: Challenge and Change
,” Hand Pump Technology Network Working Paper WP, Vol. 1, pp. 11, 68, 69, 70, 74, 96, 97, 99, 123.
5.
Hunter
,
P. R.
,
Zmirou-Navier
,
D.
, and
Hartemann
,
P.
,
2009
, “
Estimating the Impact on Health of Poor Reliability of Drinking Water Interventions in Developing Countries
,”
Sci. Total Environ.
,
407
(
8
), pp.
2621
2624
.
6.
Renouard
,
J.
,
2021
, “
Interview on Reliability of Water Hand Pumps in Eastern Africa With Founder of wholives.org
,” personal interview, South Jordan, UT, Mar. 1.
7.
Klug
,
T.
,
Cronk
,
R.
,
Shields
,
K. F.
, and
Bartram
,
J.
,
2018
, “
A Categorization of Water System Breakdowns: Evidence From Liberia, Nigeria, Tanzania, and Uganda
,”
Sci. Total Environ.
,
619–620
, pp.
1126
1132
.
8.
Burdge
,
R. J.
,
2004
,
A Community Guide to Social Impact Assessment
,
Social Ecology Press
,
Huntsville, TX
, p.
2
.
9.
Mattson
,
C. A.
, and
Wood
,
A. E.
,
2014
, “
Nine Principles for Design for the Developing World as Derived From the Engineering Literature
,”
ASME J. Mech. Des.
,
136
(
12
), p.
121403
.
10.
George
,
C.
, and
Shams
,
A.
,
2007
, “
The Challenge of Including Customer Satisfaction Into the Assessment Criteria of Overseas Service-Learning Projects
,”
Int. J. Serv. Learn. Eng.
,
2
(
2
), pp.
64
75
.
11.
Stevenson
,
P. D.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
A Method for Creating Product Social Impact Models of Engineered Products
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041101
.
12.
Engineering for Change
,
2022
, “
Introduction to EGD
,” https://www.engineeringforchange.org/what-we-do/introduction-to-egd/
13.
Hollander
,
D.
,
Ajroud
,
B.
,
Thomas
,
E.
,
Peabody
,
S.
,
Jordan
,
E.
,
Javernick-Will
,
A.
, and
Linden
,
K.
,
2020
, “
Monitoring Methods for Systems-Strengthening Activities Toward Sustainable Water and Sanitation Services in Low-Income Settings
,”
Sustainability
,
12
(
17
)
14.
Clark
,
H.
, and
Anderson
,
A. A.
,
2004
, “
Theories of Change and Logic Models: Telling Them Apart
,”
American Evaluation Association Conference
,
Atlanta, GA
,
Nov. 3–6
.
15.
United Way of America
,
1996
, “
Measuring Program Outcomes: A Practical Approach
,” Alexandria, VA.
16.
Kellogg
,
W. K.
, et al.,
2006
, “
WK Kellogg Foundation Logic Model Development Guide
,” WK Kellogg Foundation.
17.
Stevenson
,
P. D.
,
Mattson
,
C. A.
,
Bryden
,
K. M.
, and
MacCarty
,
N. A.
,
2018
, “
Toward a Universal Social Impact Metric for Engineered Products That Alleviate Poverty
,”
ASME J. Mech. Des.
,
140
(
4
), p.
41404
.
18.
Hutchins
,
M. J.
,
Gierke
,
J. S.
, and
Sutherland
,
J. W.
,
2009
, “
Decision Making for Social Sustainability: A Life-Cycle Assessment Approach
,”
Proceedings of the International Symposium on Technology and Society
,
Tempe, AZ
,
May 18–20
,
IEEE
, pp.
1
5
.
19.
Stringham
,
B. J.
,
Smith
,
D. O.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
Combining Direct and Indirect User Data for Calculating Social Impact Indicators of Products in Developing Countries
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121401
.
20.
Wood
,
A. E.
, and
Mattson
,
C. A.
,
2019
, “
Quantifying the Effects of Various Factors on the Utility of Design Ethnography in the Developing World
,”
Res. Eng. Des.
,
30
(
3
), pp.
317
338
.
21.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D: Transp. Environ.
,
32
, pp.
421
434
.
22.
Fontes
,
S. J.
,
Gaasbeek
,
A.
,
Goedkoop
,
M.
,
Contreras
,
S.
, and
Simon
,
E.
,
2016
, “
Handbook for Product Social Impact Assessment 3.0
.”
23.
Wagaman
,
A.
,
2016
, “
From Principle to Practice: Implementing the Principles for Digital Development
,”
Tech. Rep.
,
The Principles for Digital Development Working Group
,
Washington, DC
.
24.
Stringham
,
B. J.
, and
Mattson
,
C. A.
,
2021
, “
Design of Remote Data Collection Devices for Social Impact Indicators of Products in Developing Countries
,”
Dev. Eng.
,
6
, p.
100062
.
25.
Thomson
,
P.
,
Bradley
,
D.
,
Katilu
,
A.
,
Katuva
,
A.
,
Lanzoni
,
M.
,
Koehler
,
J.
, and
Hope
,
R.
,
2019
, “
Rainfall and Groundwater Use in Rural Kenya
,”
Sci. Total Environ.
,
649
, pp.
722
730
.
26.
Thomas
,
E. A.
,
Kathuni
,
S.
,
Wilson
,
D.
,
Muragijimana
,
C.
,
Sharpe
,
T.
,
Kaberia
,
D.
,
Macharia
,
D.
,
Kebede
,
A.
, and
Birhane
,
P.
,
2020
, “
The Drought Resilience Impact Platform (DRIP): Improving Water Security Through Actionable Water Management Insights
,”
Front. Clim.
,
2
, p.
6
.
27.
Turman-Bryant
,
N.
,
Nagel
,
C.
,
Stover
,
L.
,
Muragijimana
,
C.
, and
Thomas
,
E. A.
,
2019
, “
Improved Drought Resilience Through Continuous Water Service Monitoring and Specialized Institutions: A Longitudinal Analysis of Water Service Delivery Across Motorized Boreholes in Northern Kenya
,”
Sustainability
,
11
(
11
).
28.
Wilson
,
D. L.
,
Coyle
,
J. R.
, and
Thomas
,
E. A.
,
2017
, “
Ensemble Machine Learning and Forecasting Can Achieve 99% Uptime for Rural Handpumps
,”
PLoS One
,
12
(
11
).
29.
Thomas
,
E.
,
Wilson
,
D.
,
Kathuni
,
S.
,
Libey
,
A.
,
Chintalapati
,
P.
, and
Coyle
,
J.
,
2021
, “
A Contribution to Drought Resilience in East Africa Through Groundwater Pump Monitoring Informed by In-Situ Instrumentation, Remote Sensing and Ensemble Machine Learning
,”
Sci. Total Environ.
,
780
.
30.
Turman-Bryant
,
N.
,
Sharpe
,
T.
,
Nagel
,
C.
,
Stover
,
L.
, and
Thomas
,
E. A.
,
2020
, “
Toilet Alarms: A Novel Application of Latrine Sensors and Machine Learning for Optimizing Sanitation Services in Informal Settlements
,”
Dev. Eng.
,
5
, p.
100052
.
31.
Fankhauser
,
K.
,
Macharia
,
D.
,
Coyle
,
J.
,
Kathuni
,
S.
,
McNally
,
A.
,
Slinski
,
K.
, and
Thomas
,
E.
,
2022
, “
Estimating Groundwater Use and Demand in Arid Kenya Through Assimilation of Satellite Data and In-Situ Sensors With Machine Learning Toward Drought Early Action
,”
Sci. Total Environ.
,
831
, p. 154453.
32.
Thomas
,
E. A.
,
Barstow
,
C. K.
,
Rosa
,
G.
,
Majorin
,
F.
, and
Clasen
,
T.
,
2013
, “
Use of Remotely Reporting Electronic Sensors for Assessing Use of Water Filters and Cookstoves in Rwanda
,”
Environ. Sci. Technol.
,
47
(
23
), pp.
13602
13610
.
33.
Wilson
,
D. L.
,
Adam
,
M. I.
,
Abbas
,
O.
,
Coyle
,
J.
,
Kirk
,
A.
,
Rosa
,
J.
, and
Gadgil
,
A. J.
,
2015
, “Comparing Cookstove Usage Measured With Sensors Versus Cell Phone-Based Surveys in Darfur, Sudan,”
Technologies for Development: What is Essential?
,
Springer International Publishing
,
Cham, Switzerland
, pp.
211
221
.
34.
Ventrella
,
J.
,
Lefebvre
,
O.
, and
MacCarty
,
N.
,
2020
, “
Techno-Economic Comparison of the Fuel Sensor and Kitchen Performance Test to Quantify Household Fuel Consumption With Multiple Cookstoves and Fuels
,”
Dev. Eng.
,
5
, p.
100047
.
35.
Andres
,
L.
,
Boateng
,
K.
,
Borja-Vega
,
C.
, and
Thomas
,
E.
,
2018
, “
A Review of In-Situ and Remote Sensing Technologies to Monitor Water and Sanitation Interventions
,”
Water
,
10
(
6
), p.
756
.
36.
Sinha
,
A.
,
Nagel
,
C. L.
,
Thomas
,
E.
,
Schmidt
,
W. P.
,
Torondel
,
B.
,
Boisson
,
S.
, and
Clasen
,
T. F.
,
2016
, “
Assessing Latrine Use in Rural India: A Cross-Sectional Study Comparing Reported Use and Passive Latrine Use Monitors
,”
Am. J. Tropical Med. Hygiene
,
95
(
3
), pp.
720
727
.
37.
Collings
,
S.
, and
Munyehirwe
,
A.
,
2016
, “
Pay-As-You-Go Solar PV in Rwanda: Evidence of Benefits to Users and Issues of Affordability
,”
Field Actions Sci. Rep. J. Field Actions
,
9
(
Special Issue 15
), pp.
94
103
.
38.
Nagel
,
C.
,
Beach
,
J.
,
Tribagiza
,
C.
, and
Thomas
,
E. A.
,
2015
, “
Evaluating Cellular Instrumentation on Rural Handpumps to Improve Service Delivery—A Longitudinal Study in Rural Rwanda
,”
Environ. Sci. Technol.
,
49
(
24
), pp.
14292
14300
.
39.
Thomas
,
E. A.
,
Zumr
,
Z.
,
Graf
,
J.
,
Wick
,
C.
,
McCellan
,
J.
,
Imam
,
Z.
,
Barstow
,
C.
,
Spiller
,
K.
, and
Fleming
,
M.
,
2013
, “
Remotely Accessible Instrumented Monitoring of Global Development Programs: Technology Development and Validation
,”
Sustainability
,
5
(
8
), pp.
3288
3301
.
40.
Thomas
,
E. A.
,
Needoba
,
J.
,
Kaberia
,
D.
,
Butterworth
,
J.
,
Adams
,
E. C.
,
Oduor
,
P.
,
Macharia
,
D.
,
Mitheu
,
F.
,
Mugo
,
R.
, and
Nagel
,
C.
,
2019
, “
Quantifying Increased Groundwater Demand From Prolonged Drought in the East African Rift Valley
,”
Sci. Total Environ.
,
666
(
May
), pp.
1265
1272
.
41.
Ottosson
,
H. J.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
Analysis of Perceived Social Impacts of Existing Products Designed for the Developing World, With Implications for New Product Development
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051101
.
42.
Ottosson
,
H. J.
,
Mattson
,
C. A.
,
Johnson
,
O. K.
, and
Naylor
,
T. A.
,
2021
, “
Nitrile Cup Seal Robustness in the India Mark II/III Hand Pump System
,”
Dev. Eng.
,
6
, p.
100060
.
43.
Carter
,
R.
, and
Lockwood
,
H.
,
2011
, “
A Vision for Achieving Sustainable Rural Water Services for All
,” Tech. Rep., RWSN Field Note 2011-9,
Rural Water Supply Network
,
St Gallen
.
44.
Engineering for Change
, “
Installation & Maintenance Manual for the India Mark II Handpump
,” https://www.engineeringforchange.org/wp-content/uploads/2015/08/mark2.pdf, Accessed November 14, 2022.
45.
Rainock
,
M.
,
Everett
,
D.
,
Pack
,
A.
,
Dahlin
,
E. C.
, and
Mattson
,
C. A.
,
2018
, “
The Social Impacts of Products: A Review.
,”
Impact Assess. Project Appraisal
,
36
(
3
), pp.
230
241
.
46.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
, “
Automatic Differentiation in PyTorch
,”
31st Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
47.
Bisong, E., 2019, “Google Colaboratory,” Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley, CA.
48.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
49.
Adair
,
J. G.
,
1984
, “
The Hawthorne Effect: A Reconsideration of the Methodological Artifact
,”
J. Appl. Psychol.
,
69
(
2
), p.
334
.
50.
Pommells
,
M.
,
Schuster-Wallace
,
C.
,
Watt
,
S.
, and
Mulawa
,
Z.
,
2018
, “
Gender Violence as a Water, Sanitation, and Hygiene Risk: Uncovering Violence Against Women and Girls as It Pertains to Poor WaSH Access
,”
Violence Against Women
,
24
(
15
), pp.
1851
1862
.
51.
U.S. Navy
,
2023
, “
Table of Sunrise/Sunset, Moonrise/Moonset, or Twilight Times for an Entire Year
,” Astronomical Applications Department, https://aa.usno.navy.mil/data/RS_OneYear
52.
World Bank
,
2021
, “
Climate Risk Country Profile: Uganda
.” Bank Climate Change Knowledge Portal, 1 June 2023, https://climateknowledgeportal.worldbank.org/sites/default/files/2021-05/15464-WB_Uganda%20Country%20Profile-WEB%20%281%29.pdf
53.
MATLAB
,
2022
,
Version 9.12.0 (R2022a)
,
The MathWorks Inc.
,
Natick, MA
.
54.
Tan
,
J.
,
Yang
,
J.
,
Wu
,
S.
,
Chen
,
G.
, and
Zhao
,
J.
,
2021
, “
A Critical Look at the Current Train/Test Split in Machine Learning
,” CoRR, abs/2106.04525.
55.
Kohavi
,
R.
, et al.,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
IJCAI
,
Montreal, Canada
,
Aug. 20–25
, Vol.
14
, pp.
1137
1145
.
56.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
.
57.
Sun
,
C.
,
Shrivastava
,
A.
,
Singh
,
S.
, and
Gupta
,
A.
,
2017
, “
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
,”
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
, pp.
843
852
.
58.
Mai
,
L.
,
Koliousis
,
A.
,
Li
,
G.
,
Brabete
,
A.-O.
, and
Pietzuch
,
P.
,
2019
, “
Taming Hyper-parameters in Deep Learning Systems
,”
SIGOPS Oper. Syst. Rev.
,
53
(
1
), pp.
52
58
.
59.
Blott
,
M.
,
Preußer
,
T. B.
,
Fraser
,
N. J.
,
Gambardella
,
G.
,
O’brien
,
K.
,
Umuroglu
,
Y.
,
Leeser
,
M.
, and
Vissers
,
K.
,
2018
, “
Finn-r: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks
,”
ACM Trans. Reconfig. Technol. Syst.
,
11
(
3
), pp.
1
23
.
60.
Meeker
,
M.
,
2018
, “
Internet Trends 2018
,”
2018 Code Conference
,
Rancho Palo Verdes, CA
,
May 29–31
,
Kleiner Perkins
, p.
25
.
You do not currently have access to this content.