Abstract

We present an automatic multilayer power plane generation method to accelerate the design of printed circuit boards (PCB). In PCB design, while automatic solvers have been developed to predict important indicators such as the IR-drop, power integrity, and signal integrity, the generation of the power plane itself still largely relies on laborious manual methods. Our automatic power plane generation approach is based on genetic optimization combined with a multilayer perceptron (MLP) and is able to automatically generate power planes across a diverse set of problems with varying levels of difficulty. Our method GOMLP consists of an outer loop genetic optimizer (GO) and an inner loop MLP that generate power planes automatically. The critical elements of our approach include contour detection, feature expansion, and a distance measure to enable island-minimizing complex power plane generation. We compare our approach to a baseline solution based on A*. The A* method consisting of a sequential island generation and merging process which can produce less than ideal solutions. Our experimental results show that on single layer power plane problems, our method outperforms A* in 71% of the problems with varying levels of board layout difficulty. We further describe H-GOMLP, which extends GOMLP to multilayer power plane problems using hierarchical clustering and net similarities based on the Hausdorff distance.

References

1.
Schaller
,
R. R.
,
1997
, “
Moore’s Law: Past, Present and Future
,”
IEEE Spectr.
,
34
(
6
), pp.
52
59
.
2.
Smith
,
L. D.
,
Anderson
,
R.
, and
Roy
,
T.
,
2001
, “
Power Plane Spice Models and Simulated Performance for Materials and Geometries
,”
IEEE Trans. Adv. Packaging
,
24
(
3
), pp.
277
287
.
3.
Zhong
,
Y.
, and
Wong
,
M. D.
,
2005
, “
Fast Algorithms for IR Drop Analysis in Large Power Grid
,”
ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design
,
San Jose, CA
,
Nov. 6–10
,
IEEE
, pp.
351
357
.
4.
Nithin
,
S.
,
Shanmugam
,
G.
, and
Chandrasekar
,
S.
,
2010
, “
Dynamic Voltage (IR) Drop Analysis and Design Closure: Issues and Challenges
,”
11th International Symposium on Quality Electronic Design (ISQED)
,
San Jose, CA
,
Mar. 22–24
,
IEEE
, pp.
611
617
.
5.
Zhang
,
M.-S.
, and
Tan
,
H. Z.
,
2015
, “
Ir-drop Modeling and Reduction for High-Performance Printed Circuit Boards
,”
IEEE Electromagn. Compatibility Mag.
,
4
(
4
), pp.
90
101
.
6.
Wu
,
T.-L.
,
Chuang
,
H.-H.
, and
Wang
,
T.-K.
,
2010
, “
Overview of Power Integrity Solutions on Package and PCB: Decoupling and EBG Isolation
,”
IEEE Trans. Electromagn. Compatibility
,
52
(
2
), pp.
346
356
.
7.
Fizesan
,
R.
, and
Pitica
,
D.
,
2010
, “
Simulation for Power Integrity to Design a PCB for an Optimum Cost
,”
IEEE 16th International Symposium for Design and Technology in Electronic Packaging (SIITME)
,
Pitesti, Romania
,
Sept. 23–26
,
IEEE
, pp.
141
146
.
8.
Kim
,
J.
, and
Li
,
E.
,
2010
, “
Special Issue on PCB Level Signal Integrity, Power Integrity, and EMC
,”
IEEE Trans. Electromagn. Compatibility
,
52
(
2
), pp.
246
247
.
9.
Chen
,
X.-P.
,
2010
, “
Analysis and Application for Integrity of PCB Signal
,”
2nd IEEE International Conference on Information and Financial Engineering
,
Chongqing, China
,
Sept. 17–19
,
IEEE
, pp.
328
331
.
10.
Eudes
,
T.
,
Ravelo
,
B.
, and
Louis
,
A.
,
2011
, “
Experimental Validations of a Simple PCB Interconnect Model for High-Rate Signal Integrity
,”
IEEE Trans. Electromagn. Compatibility
54
(
2
), pp.
397
404
.
11.
Tseng
,
F. H.
,
Liang
,
T. T.
,
Lee
,
C. H.
,
Der Chou
,
L.
, and
Chao
,
H. C.
,
2014
, “
A Star Search Algorithm for Civil UAV Path Planning with 3g Communication
,”
2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing
,
Kitakyushu, Japan
,
Aug. 27–29
,
IEEE
, pp.
942
945
.
12.
Cui
,
W.
,
Fan
,
J.
,
Ren
,
Y.
,
Shi
,
H.
,
Drewniak
,
J. L.
, and
DuBroff
,
R. E.
,
2003
, “
DC Power-Bus Noise Isolation With Power-Plane Segmentation
,”
IEEE Trans. Electromagn. Compatibility
,
45
(
2
), pp.
436
443
.
13.
Cheng
,
H.-D.
,
Jiang
,
X. H.
,
Sun
,
Y.
, and
Wang
,
J.
,
2001
, “
Color Image Segmentation: Advances and Prospects
,”
Pattern Recogn.
,
34
(
12
), pp.
2259
2281
.
14.
Pham
,
D. L.
,
Xu
,
C.
, and
Prince
,
J. L.
,
2000
, “
Current Methods in Medical Image Segmentation
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
315
337
.
15.
Haralick
,
R. M.
, and
Shapiro
,
L. G.
,
1985
, “
Image Segmentation Techniques
,”
Comput. Vision Graph. Image Process.
,
29
(
1
), pp.
100
132
.
16.
Wang
,
L.
,
Fonseca
,
R.
, and
Tian
,
Y.
,
2020
, “
Learning Search Space Partition For Black-Box Optimization Using Monte Carlo Tree Search
.” arXiv preprint arXiv:2007.00708.
17.
Buck
,
R. C.
,
1943
, “
Partition of Space
,”
Am. Math. Mon.
,
50
(
9
), pp.
541
544
.
18.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.
19.
Jing
,
T.
,
Lim
,
M. H.
, and
Ong
,
Y. S.
,
2003
, “
A Parallel Hybrid GA for Combinatorial Optimization Using Grid Technology
,”
The 2003 Congress on Evolutionary Computation, 2003. CEC’03
,
Canberra, ACT, Australia
,
Dec. 8–12
,
IEEE
, Vol.
3
, pp.
1895
1902
.
20.
Mühlenbein
,
H.
,
1992
, “
Parallel Genetic Algorithms in Combinatorial Optimization
,”
Comput. Oper. Res.
, pp.
441
453
.
21.
Lipowski
,
A.
, and
Lipowska
,
D.
,
2012
, “
Roulette-Wheel Selection Via Stochastic Acceptance
,”
Physica A
,
391
(
6
), pp.
2193
2196
.
22.
Hassanat
,
A.
,
Alkafaween
,
E.
,
Alnawaiseh
,
N.
,
Abbadi
,
M.
,
Alkasassbeh
,
M.
, and
Alhasanat
,
M.
,
2016
, “
Enhancing Genetic Algorithms Using Multi Mutations: Experimental Results on the Travelling Salesman Problem
,”
Int. J. Comput. Sci. Inf. Secur.
,
14
, pp.
785
801
.
23.
Hennigh
,
O.
,
Narasimhan
,
S.
,
Nabian
,
M. A.
,
Subramaniam
,
A.
,
Tangsali
,
K.
,
Fang
,
Z.
,
Rietmann
,
M.
,
Byeon
,
W.
, and
Choudhry
,
S.
,
2021
, “
Nvidia Simnet™: An AI-Accelerated Multi-Physics Simulation Framework
,”
Computational Science–ICCS 2021: 21st International Conference Proceedings, Part V
,
Krakow, Poland
,
June 16–18
,
Springer
, pp.
447
461
.
24.
Gong
,
X.-Y.
,
Su
,
H.
,
Xu
,
D.
,
Zhang
,
Z.
,
Shen
,
F.
, and
Yang
,
H.-B.
,
2018
, “
An Overview of Contour Detection Approaches
,”
Int. J. Autom. Comput.
,
15
, pp.
656
672
.
25.
Huttenlocher
,
D. P.
,
Klanderman
,
G. A.
, and
Rucklidge
,
W. J.
,
1993
, “
Comparing Images Using the Hausdorff Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
15
(
9
), pp.
850
863
.
26.
Andoni
,
A.
,
Indyk
,
P.
, and
Krauthgamer
,
R.
,
2008
, “
Earth Mover Distance Over High-Dimensional Spaces
,”
SODA
,
8
, pp.
343
352
.
27.
Hu
,
J.
, and
Sapatnekar
,
S. S.
,
2001
, “
A Survey on Multi-Net Global Routing for Integrated Circuits
,”
Integration
,
31
(
1
), pp.
1
49
.
28.
Liao
,
H.
,
Zhang
,
W.
,
Dong
,
X.
,
Poczos
,
B.
,
Shimada
,
K.
, and
Burak Kara
,
L.
,
2020
, “
A Deep Reinforcement Learning Approach for Global Routing
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061701
.
29.
Ozdal
,
M. M.
, and
Wong
,
M. D.
,
2007
, “
Archer: A History-Driven Global Routing Algorithm
,”
2007 IEEE/ACM International Conference on Computer-Aided Design
,
San Jose, CA
,
Nov. 4–8
,
IEEE
, pp.
488
495
.
30.
Gelperin
,
D.
,
1977
, “
On the Optimality of a Star
,”
Artif. Intell.
,
8
(
1
), pp.
69
76
.
31.
Kruskal
,
J. B.
,
1956
, “
On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem
,”
Proc. Am. Math. Soc.
,
7
(
1
), pp.
48
50
.
32.
Peterson
,
L. E.
,
2009
, “
K-nearest Neighbor
,”
Scholarpedia
,
4
(
2
), p.
1883
.
33.
Wayahdi
,
M. R.
,
Ginting
,
S. H. N.
, and
Syahputra
,
D.
,
2021
, “
Greedy, a-star, and Dijkstra’s Algorithms in Finding Shortest Path
,”
Int. J. Adv. Data Inf. Syst.
,
2
(
1
), pp.
45
52
.
34.
Dogar
,
M. R.
,
Koval
,
M. C.
,
Tallavajhula
,
A.
, and
Srinivasa
,
S. S.
,
2014
, “
Object Search by Manipulation
,”
Auton. Rob.
,
36
(
1
), pp.
153
167
.
35.
Dyer
,
C. R.
,
1980
, “
Computing the Euler Number of an Image From Its Quadtree
,”
Comput. Graph. Image Process.
,
13
(
3
), pp.
270
276
.
36.
Abel
,
L. C.
,
1972
, “
On the Ordering of Connections for Automatic Wire Routing
,”
IEEE Trans. Comput.
,
100
(
11
), pp.
1227
1233
.
37.
Chen
,
H.-Y.
, and
Chang
,
Y.-W.
,
2009
, “Global and Detailed Routing,”
Electronic Design Automation
,
Elsevier
, pp.
687
749
.
You do not currently have access to this content.