Abstract

Accurate analysis of rare failure events with an affordable computational cost is often challenging in many engineering applications, particularly for problems with high-dimensional system inputs. The extremely low probabilities of occurrence often lead to large probability estimation errors and low computational efficiency. Thus, it is vital to develop advanced probability analysis methods that are capable of providing robust estimations of rare event probabilities with narrow confidence bounds. The general method of determining confidence intervals of an estimator using the central limit theorem faces the critical obstacle of low computational efficiency. This is a side effect of the widely used Monte Carlo method, which often requires a large number of simulation samples to derive a reasonably narrow confidence interval. In this paper, a new probability analysis approach is developed which can be used to derive the estimates of rare event probabilities efficiently with narrow estimation bounds simultaneously for high-dimensional problems and complex engineering systems. The asymptotic behavior of the developed estimator is proven theoretically without imposing strong assumptions. An asymptotic confidence interval is established for the developed estimator. The presented study offers important insights into the robust estimations of the probability of occurrences for rare events. The accuracy and computational efficiency of the developed technique are assessed with numerical and engineering case studies. Case study results have demonstrated that narrow bounds can be obtained efficiently using the developed approach with the true values consistently located within the estimation bounds.

References

1.
Si
,
W.
,
Yang
,
Q.
,
Wu
,
X.
, and
Chen
,
Y.
,
2018
, “
Reliability Analysis Considering Dynamic Material Local Deformation
,”
J. Qual. Technol.
,
50
(
2
), pp.
183
197
.
2.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
70
81
.
3.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
, “Reliability Analysis Techniques (Time-Independent),”
Engineering Design Under Uncertainty and Health Prognostics
,
Springer
,
New York
, pp.
101
156
.
4.
Chen
,
Y.
, and
Jin
,
J.
,
2005
, “
Quality-Reliability Chain Modeling for System-Reliability Analysis of Complex Manufacturing Processes
,”
IEEE Trans. Reliab.
,
54
(
3
), pp.
475
488
.
5.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
, Fundamentals of Reliability Analysis,”
Engineering Design Under Uncertainty and Health Prognostics
.
Springer
,
New York
, pp.
83
100
.
6.
Hasofer
,
A. M.
, and
Lind,
N. C
,
1974
, “
An Exact and Invariant First Order Reliability Format
,”
J. Eng. Mech. Div., Proc. ASCE
,
100
(
1
), pp.
111
121
.
7.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1982
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.
8.
Zhao
,
Z.
,
Xu
,
Y.
,
Lin
,
Y.-F.
,
Wang
,
X.
, and
Wang
,
P.
,
2021
, “
Probabilistic Modeling and Reliability-Based Design Optimization of a Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
197
, p.
117341
.
9.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
).
10.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons
,
Hoboken, NJ
.
11.
Yang
,
Q.
, and
Chen
,
Y.
,
2011
, “
Monte Carlo Methods for Reliability Evaluation of Linear Sensor Systems
,”
IEEE Trans. Reliab.
,
60
(
1
), pp.
305
314
.
12.
Au
,
S.-K.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
.
13.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
.
14.
Ko
,
Y. M.
, and
Byon
,
E.
,
2022
, “
Optimal Budget Allocation for Stochastic Simulation With Importance Sampling: Exploration vs. Replication
,”
IISE Trans.
,
54
(
9
), pp.
881
893
.
15.
Pan
,
Q.
,
Byon
,
E.
,
Ko
,
Y. M.
, and
Lam
,
H.
,
2020
, “
Adaptive Importance Sampling for Extreme Quantile Estimation With Stochastic Black Box Computer Models
,”
Nav. Res. Logist. (NRL)
,
67
(
7
), pp.
524
547
.
16.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probabilistic Eng. Mech.
,
16
(
4
), pp.
263
277
.
17.
Papadopoulos
,
V.
,
Giovanis
,
D. G.
,
Lagaros
,
N. D.
, and
Papadrakakis
,
M.
,
2012
, “
Accelerated Subset Simulation With Neural Networks for Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
223
, pp.
70
80
.
18.
Bourinet
,
J.-M.
,
Deheeger
,
F.
, and
Lemaire
,
M.
,
2011
, “
Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
,”
Struct. Saf.
,
33
(
6
), pp.
343
353
.
19.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscipl. Optim.
,
44
(
5
), pp.
673
690
.
20.
Li
,
L.
,
Bect
,
J.
, and
Vazquez
,
E.
,
2012
, “Bayesian Subset Simulation: a Kriging-Based Subset Simulation Algorithm for the Estimation of Small Probabilities of Failure,” arXiv preprint arXiv:1207.1963.
21.
Chiachio
,
M.
,
Beck
,
J. L.
,
Chiachio
,
J.
, and
Rus
,
G.
,
2014
, “
Approximate Bayesian Computation by Subset Simulation
,”
SIAM J. Sci. Comput.
,
36
(
3
), pp.
A1339
A1358
.
22.
Gúed´e
,
Z.
,
Tantar
,
A.
,
Tantar
,
E.
, and
Del Moral
,
P.
,
2012
, “
Application of a Particle Filter-Based Subset Simulation Method to the Reliability Assessment of a Marine Structure
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
,
ASME, pp. 203–210
.
23.
Li
,
H.-S.
,
Ma
,
Y.-Z.
, and
Cao
,
Z.
,
2015
, “
A Generalized Subset Simulation Approach for Estimating Small Failure Probabilities of Multiple Stochastic Responses
,”
Comput. Struct.
,
153
, pp.
239
251
.
24.
Abdollahi
,
A.
,
Moghaddam
,
M. A.
,
Monfared
,
S. A. H.
,
Rashki
,
M.
, and
Li
,
Y.
,
2020
, “
A Refined Subset Simulation for the Reliability Analysis Using the Subset Control Variate
,”
Struct. Saf.
,
87
, p.
102002
.
25.
Wang
,
Z.
, and
Wang
,
P.
,
2016
, “
Accelerated Failure Identification Sampling for Probability Analysis of Rare Events
,”
Struct. Multidiscipl. Optim.
,
54
(
1
), pp.
137
149
.
26.
Xu
,
Y.
, and
Wang
,
P.
,
2019
, “
Hybrid Adaptive Sequential Sampling for Reliability-Based Design Optimization
”.
MS thesis
.
University of Illinois at Urbana- Champaign
,
Urbana, IL
.
27.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
28.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
29.
Xu
,
Y.
, and
Wang
,
P.
,
2022
, “
Adaptive Surrogate Models for Uncertainty Quantification With Partially Observed Information
” AIAA SCITECH 2022 Forum. p.
1439
.
30.
Chen
,
X.
,
Zhou
,
H.
, and
Li
,
Y.
,
2019
, “
Effective Design Space Exploration of Gradient Nanostructured Materials Using Active Learning Based Surrogate Models
,”
Mater. Des.
,
183
, p.
108085
.
31.
Park
,
C.
,
Huang
,
J. Z.
, and
Ding
,
Y.
,
2012
, “
Gplp: A Local and Parallel Computation Toolbox for Gaussian Process Regression
,”
J. Mach. Lear. Res.
,
13
, pp.
775
779
.
32.
Wang
,
P.
,
Cui
,
X.
, and
Wang
,
Z.
,
2015
, “
Reliability Analysis and Design Considering Disjointed Active Failure Regions
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
,
ASME, p. V02BT03A058
.
33.
Deng
,
X.
,
Devon Lin
,
C.
,
Liu
,
K.-W.
, and
Rowe
,
R. K.
,
2017
, “
Additive Gaussian Process for Computer Models With Qualitative and Quantitative Factors
,”
Technometrics
,
59
(
3
), pp.
283
292
.
34.
Xu
,
Y.
, and
Wang
,
P.
,
2019
, “
A Comparison of Numerical Optimizers in Developing High Dimensional Surrogate Models
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
ASME, p. V02BT03A037
.
35.
Li
,
Y.
,
Xiao
,
W.
, and
Wang
,
P.
,
2018
, “
Uncertainty Quantification of Artificial Neural Network Based Machine Learning Potentials
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
,
ASME, p. V012T11A030
.
36.
Zeng
,
L.
,
Deng
,
X.
, and
Yang
,
J.
,
2018
, “
Constrained Gaussian Process With Application in Tissue-Engineering Scaffold Biodegradation
,”
IISE Trans.
,
50
(
5
), pp.
431
447
.
37.
Wu
,
H.
,
Fang
,
W.-Z.
,
Kang
,
Q.
,
Tao
,
W.-Q.
, and
Qiao
,
R.
,
2019
, “
Predicting Effective Diffusivity of Porous Media From Images by Deep Learning
,”
Sci. Rep.
,
9
(
1
), pp.
1
12
.
38.
(Heidi) Xia
,
H.
,
Ding
,
Y.
, and
Wang
,
J.
,
2008
, “
Gaussian Process Method for Form Error Assessment Using Coordinate Measurements
,”
Iie Trans.
,
40
(
10
), pp.
931
946
.
39.
Xiao
,
Q.
,
Mandal
,
A.
,
Devon Lin
,
C.
, and
Deng
,
X.
,
2021
, “
EzGP: Easy-to-Interpret Gaussian Process Models for Computer Experiments With Both Quantitative and Qualitative Factors
,”
SIAM/ASA J. Uncertain. Quantif.
,
9
(
2
), pp.
333
353
.
40.
Kohtz
,
S.
,
Xu
,
Y.
,
Zheng
,
Z.
, and
Wang
,
P.
,
2022
, “
Physics-Informed Machine Learning Model for Battery State of Health Prognostics Using Partial Charging Segments
,”
Mech. Syst. Signal Process
,
172
, p.
109002
.
41.
Zheng
,
Z.
,
Chen
,
B.
,
Xu
,
Y.
,
Fritz
,
N.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P.
,
2021
, “
A Gaussian Process-Based Crack Pattern Modeling Approach for Battery Anode Materials Design
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
1
), p.
011011
.
42.
Abhinav
,
P.
,
Tuo
,
R.
, and
Ding
,
Y.
,
2022
, “
Gaussian Process-Aided Function Comparison Using Noisy Scattered Data
,”
Technometrics
,
64
(
1
), pp.
92
102
.
43.
Zheng
,
Z.
,
Xu
,
Y.
, and
Wang
,
P.
,
2021
, “
Uncertainty Quantification Analysis on Mechanical Properties of the Structured Silicon Anode via Surrogate Models
,”
J. Electrochem. Soc.
,
168
(
4
), p.
040508
.
44.
Xu
,
Y.
,
Renteria
,
A.
, and
Wang
,
P.
,
2022
, “
Adaptive Surrogate Models With Partially Observed Information
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108566
.
45.
Liu
,
J. S.
, and
Liu
,
J. S.
,
2001
,
Monte Carlo Strategies in Scientific Computing
. Vol.
10
.
Springer
,
New York
.
46.
Hong
,
H. P.
,
1998
, “
An Efficient Point Estimate Method for Probabilistic Analysis
,”
Reliab. Eng. Syst. Saf.
,
59
(
3
), pp.
261
267
.
47.
Hong
,
H. P.
,
1996
, “
Point-Estimate Moment-Based Reliability Analysis
,”
Civil Eng. Syst.
,
13
(
4
), pp.
281
294
.
48.
Balakrishnan
,
N.
,
Ibragimov
,
I. A. V. B.
, and
Nevzorov
,
V. B.
,
2012
,
Asymptotic Methods in Probability and Statistics With Applications
,
Springer Science & Business Media
, Birkhäuser, Boston.
49.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
, “Reliability-Based Design Optimization,”
Engineering Design Under Uncertainty and Health Prognostics
.
Springer
,
New York
, pp.
197
241
.
50.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R.-J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscipl. Optim.
,
26
(
3
), pp.
272
283
.
51.
Papaioannou
,
I.
,
Papadimitriou
,
C.
, and
Straub
,
D.
,
2016
, “
Sequential Importance Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
62
, pp.
66
75
.
You do not currently have access to this content.