Abstract

Prior work has demonstrated that design tasks can be cognitively demanding, due to the inherent ambiguity and complexity of design problems. Few studies, however, have examined the evolution of cognitive load during the engineering design process and the linkages between subdimensions of cognitive load and design task outcomes. To address this gap, the current work investigates the evolution of cognitive load across two distinct design tasks: ideation and prototyping, and the relationship between cognitive load and design task outcomes. Results suggest that there is a significant difference in cognitive load experienced by the designer during ideation and prototyping. Additionally, findings suggest that cognitive load during ideation is positively correlated with the uniqueness, usefulness, and elegance of ideas.

References

1.
Koen
,
P.
,
Ajamian
,
G.
,
Burkart
,
R.
,
Clamen
,
A.
,
Davidson
,
J.
,
D’Amore
,
R.
,
Elkins
,
C.
, et al
,
2001
, “
Providing Clarity and a Common Language to the ‘Fuzzy Front End,’
,”
Res. Technol. Manage.
,
44
(
2
), pp.
46
55
.
2.
Kim
,
J.
, and
Wilemon
,
D.
,
2002
, “
Focusing the Fuzzy Front-End in New Product Development
,”
R&D Manage.
,
32
(
4
), pp.
269
279
.
3.
Leifer
,
L. J.
, and
Steinert
,
M.
,
2013
, “
Dancing With Ambiguity: Causality Behavior, Design Thinking, and Triple-Loop-Learning
,”
Manage. Fuzzy Front End Innov.
,
10
(
1
), pp.
141
158
.
4.
Jensen
,
M. B.
,
Elverum
,
C. W.
, and
Steinert
,
M.
,
2017
, “
Eliciting Unknown Unknowns With Prototypes: Introducing Prototrials and Prototrial-Driven Cultures
,”
Des. Studies
,
49
(
3
), pp.
1
31
.
5.
Sutcliffe
,
A.
, and
Sawyer
,
P.
,
2013
, “
Requirements Elicitation: Towards the Unknown Unknowns
,”
21st IEEE International Requirements Engineering Conference, RE 2013—Proceedings
,
Rio de Janeiro, Brazil
,
July 15–19
, pp.
92
104
.
6.
Kriesi
,
C.
,
Blindheim
,
J.
,
Bjelland
,
Ø
, and
Steinert
,
M.
,
2016
, “
Creating Dynamic Requirements Through Iteratively Prototyping Critical Functionalities
,”
26th CIRP Design Conference
,
Stockholm, Sweden
,
June 15–17
.
7.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
8.
Alexiou
,
K.
,
Zamenopoulos
,
T.
,
Johnson
,
J. H.
, and
Gilbert
,
S. J.
,
2009
, “
Exploring the Neurological Basis of Design Cognition Using Brain Imaging: Some Preliminary Results
,”
Des. Studies
,
30
(
6
), pp.
623
647
.
9.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2016
, “
Evidence-Based Design Heuristics for Idea Generation
,”
Des. Studies
,
46
(
9
), pp.
95
124
.
10.
Brereton
,
M.
,
2004
, “
Distributed Cognition in Engineering Design: Negotiating Between Abstract and Material Representations
,”
Des. Represent.
,
1
(
1
), pp.
83
103
.
11.
Aurigemma
,
J.
,
Chandrasekharan
,
S.
,
Nersessian
,
N. J.
, and
Newstetter
,
W. C.
,
2013
, “
Design in the Wild
,”
ASEE Prism
,
22
(
7–8
), pp.
45
55
.
12.
Dym
,
C. L.
,
Agogino
,
A. M.
,
Eris
,
O.
,
Frey
,
D. D.
, and
Leifer
,
L. J.
,
2005
, “
Engineering Design Thinking, Teaching, and Learning
,”
J. Eng. Educ.
,
94
(
1
), pp.
103
120
.
13.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Studies
,
25
(
5
), pp.
427
441
.
14.
Cross
,
N.
,
2002
, “
Designerly Ways of Knowing: Design Discipline Versus Design Science
,”
Des. Issues
,
17
(
3
), pp.
49
55
.
15.
Cross
,
N.
,
2001
, “
Design Cognition: Results From Protocol and Other Empirical Studies of Design Activity
,”
Des. Knowing Learn.: Cogn. Des. Educ.
,
1
(
1
), pp.
79
103
.
16.
Sweller
,
J.
,
1994
, “
Cognitive Load Theory, Learning Difficulty, and Instructional Design
,”
Learn. Instruct.
,
4
(
4
), pp.
295
312
.
17.
Zheng
,
R.
,
McAlack
,
M.
,
Wilmes
,
B.
,
Kohler-Evans
,
P.
, and
Williamson
,
J.
,
2009
, “
Effects of Multimedia on Cognitive Load, Self-Efficacy, and Multiple Rule-Based Problem Solving
,”
British J. Educ. Technol.
,
40
(
5
), pp.
790
803
.
18.
Van Merriënboer
,
J. J. G.
, and
Sweller
,
J.
,
2005
, “
Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions
,”
Educ. Psychol. Rev.
,
17
(
2
), pp.
147
177
.
19.
Van Merriënboer
,
J. J. G.
, and
Sweller
,
J.
,
2010
, “
Cognitive Load Theory in Health Professional Education: Design Principles and Strategies
,”
Med. Educ.
,
44
(
1
), pp.
85
93
.
20.
Kolfschoten
,
G.
,
French
,
S.
, and
Brazier
,
F.
,
2014
, “
A Discussion of the Cognitive Load in Collaborative Problem-Solving
,”
EURO J. Decision Process.
,
2
(
1
), pp.
257
280
.
21.
Kolfschoten
,
G. L.
, and
Brazier
,
F. M. T.
,
2013
, “
Cognitive Load in Collaboration: Convergence
,”
Group Decision Negotiat.
,
22
(
1
), pp.
975
996
.
22.
Humphrey
,
S. E.
,
Nahrgang
,
J. D.
, and
Morgeson
,
F. P.
,
2007
, “
Integrating Motivational, Social, and Contextual Work Design Features: A Meta-Analytic Summary and Theoretical Extension of the Work Design Literature
,”
J. Appl. Psychol.
,
92
(
5
), pp.
1332
1356
.
23.
Grandey
,
A. A.
, and
Diamond
,
J. A.
,
2010
, “
Interactions With the Public: Bridging Job Design and Emotional Labor Perspectives
,”
J. Organ. Behav.
,
31
(
2–3
), pp.
338
350
.
24.
Grandey
,
A.
,
Foo
,
S. C.
,
Groth
,
M.
, and
Goodwin
,
R. E.
,
2013
, “
Free to Be You and Me: A Climate of Authenticity Alleviates Burnout From Emotional Labor
,”
J. Occupat. Health Psychol.
,
17
(
1
), pp.
1
14
.
25.
Christian
,
M. S.
,
Garza
,
A. S.
, and
Slaughter
,
J. E.
,
2011
, “
Work Engagement: A Quantitative Review and Test of Its Relations With Task and Contextual Performance
,”
Person. Psychol.
,
64
(
1
), pp.
89
136
.
26.
Kahn
,
W. A.
, and
Fellows
,
S.
,
2013
, “Employee Engagement and Meaningful Work,”
Purpose and Meaning in the Workplace
,
American Psychological Association
,
New York
.
27.
Cicourel
,
A.
,
2004
, “
Cognitive Overload and Communication in Two Healthcare Settings
,”
Commun. Med.
,
1
(
1
), pp.
35
43
.
28.
Fox
,
J. R.
,
Park
,
B.
, and
Lang
,
A.
,
2007
, “
When Available Resources Become Negative Resources: The Effects of Cognitive Overload on Memory Sensitivity and Criterion Bias
,”
Commun. Res.
,
34
(
3
), pp.
277
296
.
29.
Eppler
,
M. J.
, and
Mengis
,
J.
,
2004
, “
The Concept of Information Overload: A Review of Literature From Organization Science, Accounting, Marketing, MIS, and Related Disciplines
,”
Inf. Soc.
,
20
(
5
), pp.
325
344
.
30.
Kolodner
,
J. L.
, and
Wills
,
L. M.
,
1996
, “
Powers of Observation in Creative Design
,”
Des. Studies
,
17
(
4
), pp.
385
416
.
31.
Dorst
,
K.
, and
Cross
,
N.
,
2001
, “
Creativity in the Design Process: Co-Evolution of Problem-Solution
,”
Des. Studies.
,
22
(
5
), pp.
425
437
.
32.
Suwa
,
M.
,
Gero
,
J.
, and
Purcell
,
T.
,
2000
, “
Unexpected Discoveries and S-Invention of Design Requirements: Important Vehicles for a Design Process
,”
Des. Studies.
,
21
(
6
), pp.
539
567
.
33.
Akin
,
O.
,
1978
, “
How Do Architects Design?
Artif. Intell. Pattern Recogn. Comput. Aided Des.
,
1
(
1
), pp.
65
98
.
34.
Sweller
,
J.
,
1988
, “
Cognitive Load During Problem Solving: Effects on Learning
,”
Cogn. Sci.
,
12
(
2
), pp.
257
285
.
35.
Sun
,
G.
, and
Yao
,
S.
,
2012
, “
Investigating the Relation Between Cognitive Load and Creativity in the Conceptual Design Process
,”
Proc. Human Factors Ergon. Soc. Annu. Meet.
,
56
(
1
), pp.
308
312
.
36.
Nolte
,
H.
, and
McComb
,
C.
,
2021
, “
The Cognitive Experience of Engineering Design: An Examination of First-Year Student Stress Across Principal Activities of the Engineering Design Process
,”
Des. Sci.
,
7
(
1
), pp.
1
31
.
37.
Dinar
,
M.
,
Shah
,
J. J.
,
Cagan
,
J.
,
Leifer
,
L.
,
Linsey
,
J.
,
Smith
,
S. M.
, and
Hernandez
,
N. V.
,
2015
, “
Empirical Studies of Designer Thinking: Past, Present, and Future
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021101
.
38.
Atman
,
C. J.
,
Adams
,
R. S.
,
Cardella
,
M. E.
,
Turns
,
J.
,
Mosborg
,
S.
, and
Saleem
,
J.
,
2007
, “
Engineering Design Processes: A Comparison of Students and Expert Practitioners
,”
J. Eng. Educ.
,
96
(
4
), pp.
359
379
.
39.
Lauff
,
C. A.
,
Knight
,
D.
,
Kotys-Schwartz
,
D.
, and
Rentschler
,
M. E.
,
2020
, “
The Role of Prototypes in Communication Between Stakeholders
,”
Des. Studies
,
66
(
1
), pp.
1
34
.
40.
Bilda
,
Z.
, and
Gero
,
J. S.
,
2007
, “
The Impact of Working Memory Limitations on the Design Process During Conceptualization
,”
Des. Studies
,
28
(
4
), pp.
343
367
.
41.
Cheng
,
X.
,
Fu
,
S.
,
de Vreede
,
T.
,
de Vreede
,
G.-J.
,
Seeber
,
I.
,
Maier
,
R.
, and
Weber
,
B.
,
2020
, “
Idea Convergence Quality in Open Innovation Crowdsourcing: A Cognitive Load Perspective
,”
J. Manage. Inf. Syst.
,
37
(
2
), pp.
349
376
.
42.
Ulrich
,
K.
,
Eppinger
,
S.
, and
Yang
,
M.
, M
,
2020
,
Product Design and Development
,
McGraw-Hill
,
New York
.
43.
French
,
M.
,
Gravdahl
,
J.
, and
French
,
M.
,
1999
,
Conceptual Design for Engineers
,
Springer
,
London
.
44.
Redifer
,
J. L.
,
Bae
,
C. L.
, and
Zhao
,
Q.
,
2021
, “
Self-Efficacy and Performance Feedback: Impacts on Cognitive Load During Creative Thinking
,”
Learn. Instruct.
,
71
(
1
), p.
101
.
45.
Fu
,
S.
,
Cheng
,
X.
,
de Vreede
,
T.
,
de Vreede
,
G.-J.
,
Seeber
,
I.
,
Maier
,
R.
, and
Weber
,
B.
,
2019
, “
Exploring Idea Convergence and Conceptual Combination in Open Innovative Crowdsourcing from a Cognitive Load Perspective
,”
Proceedings of the 52nd Hawaii International Conference on System Sciences
,
Maui, HI
,
Jan. 8–11
, p.
10
.
46.
Van Swol
,
L. M.
,
Savadori
,
L.
, and
Sniezek
,
J. A.
,
2003
, “
Factors That May Affect the Difficulty of Uncovering Hidden Profiles
,”
Group Process. Intergroup Relat.
,
6
(
6
), pp.
285
304
.
47.
Barron
,
B.
,
2003
, “
When Smart Groups Fail
,”
J. Learn. Sci.
,
12
(
3
), pp.
307
359
.
48.
Kirschner
,
F.
,
Paas
,
F.
, and
Kirschner
,
P.
,
2009
, “
Individual and Group-Based Learning From Complex Cognitive Tasks: Effects on Retention and Transfer Efficiency
,”
Comput. Human Behav.
,
25
(
1
), pp.
306
314
.
49.
Dow
,
S. P.
, and
Klemmer
,
S. R.
,
2011
, “The Efficacy of Prototyping Under Time Constraints,”
Design Thinking
,
Springer
,
Berlin/Heidelberg
, pp.
111
128
.
50.
Neeley
,
L. W.
,
Lim
,
K.
,
Zhu
,
A.
, and
Yang
,
M. C.
,
2013
, “
Building Fast to Think Faster: Exploiting Rapid Prototyping to Accelerate Ideation During Early Stage Design
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 3–7
, pp.
1
8
.
51.
Häggman
,
A.
, and
Yang
,
M. C.
,
2013
, “
The Influence of Timing in Exploratory Prototyping and Other Activities in Design Projects
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 3–7
, pp.
1
12
.
52.
Elsen
,
C.
,
Haggman
,
A.
,
Honda
,
T.
,
Yang
,
M. C.
,
Häggman
,
A.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2012
, “
Representation in Early Stage Design: An Analysis of the Influence of Sketching and Prototyping in Design Projects
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
737
747
.
53.
Sauer
,
J.
,
Seibel
,
K.
, and
Rüttinger
,
B.
,
2010
, “
The Influence of User Expertise and Prototype Fidelity in Usability Tests
,”
Appl. Ergon.
,
41
(
1
), pp.
130
140
.
54.
Starkey
,
E. M.
,
Menold
,
J.
, and
Miller
,
S. R.
,
2019
, “
When Are Designers Willing to Take Risks? How Concept Creativity and Prototype Fidelity Influence Perceived Risk
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031104
.
55.
Tiong
,
E.
,
Seow
,
O.
,
Teo
,
K.
,
Silva
,
A.
,
Wood
,
K. L.
,
Jensen
,
D. D.
, and
Yang
,
M. C.
,
2018
, “
The Economies and Dimensionality of Prototyping: Value, Time, Cost
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
56.
Lim
,
Y.-K.
,
Stolterman
,
E.
, and
Tenenberg
,
J.
,
2008
, “
The Anatomy of Prototypes
,”
ACM Trans. Comput.-Human Interact.
,
15
(
2
), pp.
1
27
.
57.
Wall
,
M. B.
,
Ulrich
,
K. T.
, and
Flowers
,
W. C.
,
1992
, “
Evaluating Prototyping Technologies for Product Design
,”
Res. Eng. Des.
,
3
(
3
), pp.
163
177
.
58.
Camburn
,
B. A.
,
Dunlap
,
B. U.
,
Kuhr
,
R.
,
Viswanathan
,
V. K.
,
Linsey
,
J. S.
,
Jensen
,
D. D.
,
Crawford
,
R. H.
,
Otto
,
K.
, and
Wood
,
K. L.
,
2013
, “
Methods for Prototyping Strategies in Conceptual Phases of Design: Framework and Experimental Assessment
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, p. V005T06A033.
59.
Dunlap
,
B. U.
,
Hamon
,
C. L.
,
Camburn
,
B. A.
,
Crawford
,
R. H.
,
Green
,
M. G.
, and
Wood
,
K. L.
,
2014
, “
Heuristics-Based Prototyping Strategy Formation—Development and Testing of a New Prototype Planning Tool
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
.
60.
Moe
,
R. E.
,
Jensen
,
D. D.
, and
Wood
,
K. L.
,
2004
, “
Prototype Partitioning Based on Requirement Flexibility
,”
ASME 2004 International Design Engineering Technical Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
1
13
.
61.
Camburn
,
B.
,
Viswanathan
,
V.
,
Linsey
,
J.
,
Anderson
,
D.
,
Jenson
,
D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K.
,
2017
, “
Design Prototyping Methods: State of the Art in Strategies, Techniques, and Guidelines
,”
Des. Sci.
,
3
(
13
), pp.
1
33
.
62.
Schön
,
D. A.
,
1984
, “
Problems, Frames and Perspectives on Designing
,”
Des. Studies
,
5
(
3
), pp.
132
136
.
63.
Frosina
,
P.
,
Logue
,
M.
,
Book
,
A.
,
Huizinga
,
T.
,
Amos
,
S.
, and
Stark
,
S.
,
2018
, “
The Effect of Cognitive Load on Nonverbal Behavior in the Cognitive Interview for Suspects
,”
Personal. Individual Diff.
,
130
(
1
), pp.
51
58
.
64.
Paas
,
F.
,
Tuovinen
,
J. E.
,
Tabbers
,
H.
, and
Van Gerven
,
P. W.
,
2003
, “
Cognitive Load Measurement as a Means to Advance Cognitive Load Theory
,”
Educ. Psychol.
,
38
(
1
), pp.
63
71
.
65.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research,”
Advances in Psychology
, 1st ed., Vol.
1
,
Elsevier
,
New York
, pp.
139
183
.
66.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “
Nasa-Task Load Index (NASA-TLX); 20 Years Later
,”
Proc. Human Factors Ergon. Soc. Annu. Meet
,
50
(
9
), pp.
139
183
.
67.
Maier
,
T
,
Soria Zurita
,
N. F.
,
Starkey
,
E
,
Spillane
,
D.
,
McComb
,
C.
, and
Menold
,
J.
,
2022
, “
Comparing Human and Cognitive Assistant Facilitated Brainstorming Sessions
,”
J. Eng. Des.
,
33
(
4
), pp.
259
283
.
68.
Lemons
,
G.
,
Carberry
,
A.
,
Swan
,
C.
,
Jarvin
,
L.
, and
Rogers
,
C.
,
2010
, “
The Benefits of Model Building in Teaching Engineering Design
,”
Des. Studies
,
31
(
3
), pp.
288
309
.
69.
Wierwille
,
W.
, and
Eggemeier
,
F.
,
1993
, “
Recommendations for Mental Workload Measurement in a Test and Evaluation Environment
,”
Human Factors
,
35
(
2
), pp.
263
281
.
70.
Chen
,
F.
,
Zhou
,
J.
,
Wang
,
Y.
,
Yu
,
K.
,
Arshad
,
A. Z.
,
Khawaji
,
A.
, and
Conway
,
D.
,
2013
,
Robust Multimodal Cognitive Load Measurement
,
Springer
,
New York
.
71.
Zimmerer
,
C.
, and
Matthiesen
,
S.
,
2021
, “
Study on the Impact of Cognitive Load on Performance in Engineering Design
,”
International Conference on Engineering Design
,
Gothenburg, Sweden
,
Aug. 16–20
.
72.
Neeley
,
W. L.
,
Lim
,
K. B.
,
Zhu
,
A.
, and
Yang
,
M. C.
, “
Building Fast to Think Faster: Exploiting Rapid Prototyping to Accelerate Ideation During Early Stage Design
,”
ASME International Design and Engineering Technical Conference
,
Portland, OR
,
Aug. 4–7
.
73.
Letting
,
C.
,
Krishnakumar
,
S.
,
Soria Zurita
,
N.
, and
Menold
,
J.
,
2023
, “
Investigating the Effect of Sketch Quality on Shared Understanding of Design Dyads
,”
International Conference on Engineering Design
,
Bordeaux, France
,
July 24–28
.
74.
Ruckpaul
,
A.
,
Fürstenhöfer
,
T.
, and
Matthiesen
,
S.
,
2014
, “
Combination of Eye Tracking and Think-Aloud Methods in Engineering Design Research
,”
Design Computing and Cognition
,
Virtual
.
75.
Strimel
,
G. J.
,
2014
, “
Engineering Design: A Cognitive Process Approach
,” Dissertation,
California University of Pennsylvania
,
California, PA
.
76.
Sung
,
E.
, and
Kelley
,
T. R.
,
2019
, “
Identifying Design Process Patterns: A Sequential Analysis Study of Design Thinking
,”
Int. J. Technol. Des. Educ.
,
29
(
2
), pp.
283
302
.
77.
Han
,
J.
, and
Kelley
,
T. R.
,
2022
, “
STEM Integration Through Shared Practices: Examining Secondary Science and Engineering Technology Students’ Concurrent Think-Aloud Protocols
,”
J. Eng. Des.
,
33
(
5
), pp.
343
365
.
78.
Ericsson
,
K. A.
, and
Simon
,
H. A.
,
1980
, “
Verbal Reports as Data
,”
Psychol. Rev.
,
87
(
3
), pp.
215
251
.
79.
Halfin
,
H. H.
,
1973
,
Technology: A Process Approach
,
West Virginia University
,
Mogantown, WV
.
80.
Wicklein
,
R. C.
, and
Rojewski
,
J. W.
,
1999
, “
Toward a ‘Unified Curriculum Framework’ for Technology Education
,”
JITE
,
36
(
4
), pp.
1
15
.
81.
Kelley
,
T. R.
,
Capobianco
,
B. M.
, and
Kaluf
,
K. J.
,
2015
, “
Concurrent Think-Aloud Protocols to Assess Elementary Design Students
,”
Int. J. Technol. Des. Educ.
,
25
(
4
), pp.
521
540
.
82.
Vrij
,
A.
,
Mann
,
S. A.
,
Fisher
,
R. P.
,
Leal
,
S.
,
Milne
,
R.
, and
Bull
,
R.
,
2008
, “
Increasing Cognitive Load to Facilitate Lie Detection: The Benefit of Recalling an Event in Reverse Order
,”
Law Human Behav.
,
32
(
3
), pp.
253
265
.
83.
McNeill
,
D.
,
1992
, “
Hand and Mind: What Gestures Reveal About Thought
,”
Lang. Speech
,
37
(
2
), pp.
203
209
.
84.
Kendon
,
A.
,
1972
, “Some Relationships Between Body Motion and Speech,”
Studies in Dyadic Interactions
,
Springer
,
New York
.
85.
Péter
,
A.
,
1994
, “
An Introduction to Solomon Coder
,”
Reed-Solomon Codes and Their Applications
,
1
(
1
), pp.
1
16
.
86.
Utriainen
,
T. M.
,
Sonninen
,
A.
, and
Kulse
,
M.
,
2011
, “
Dirty Tuesday—Clearing the Mental Block in Design Process
,”
DS 69: Proceedings of E&PDE 2011, the 13th International Conference on Engineering and Product Design Education
,
London, UK
,
Sept. 8–9
, pp.
734
739
.
87.
Neroni
,
M. A.
,
Vasconcelos
,
L. A.
, and
Crilly
,
N.
,
2017
, “
Computer-Based ‘Mental Set’ Tasks: An Alternative Approach to Studying Design Fixation
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071102
.
88.
Eris
,
O.
,
Martelaro
,
N.
, and
Badke-Schaub
,
P.
,
2014
, “
A Comparative Analysis of Multimodal Communication During Design Sketching in Co-Located and Distributed Environments
,”
Des. Studies
,
35
(
6
), pp.
559
592
.
89.
Streeck
,
J.
,
2008
, “
Depicting by Gesture
,”
GEST
,
8
(
3
), pp.
285
301
.
90.
Gibson
,
J.
,
1978
, “
The Ecological Approach to the Visual Perception of Pictures
,”
Leonard
,
11
(
3
), pp.
227
235
.
91.
Barth
,
P.
, and
Stadtmann
,
G.
,
2021
, “
Creativity Assessment Over Time: Examining the Reliability of CAT Ratings
,”
J. Creative Behav.
,
55
(
2
), pp.
396
409
.
92.
Amabile
,
T. M.
,
1982
, “
Social Psychology of Creativity: A Consensual Assessment Technique
,”
J. Personal. Soc. Psychol.
,
43
(
5
), pp.
997
1013
.
93.
Alzayed
,
M. A.
,
Miller
,
S. R.
,
Menold
,
J.
,
Huff
,
J.
, and
McComb
,
C.
,
2020
, “
Can Design Teams Be Empathically Creative? A Simulation-Based Investigation on the Role of Team Empathy on Concept Generation and Selection
,”
ASME International Design and Engineering Technical Conference
,
Virtual
,
Aug. 17–19
.
94.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products–Three Novel Chairs
,”
Creativity Res. J.
,
11
(
4
), pp.
333
346
.
95.
Besemer
,
S. P.
, and
O’Quin
,
K.
,
1999
, “
Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample
,”
Creativity Res. J.
,
12
(
4
), pp.
287
296
.
96.
Sweeney
,
J. C.
, and
Soutar
,
G. N.
,
2001
, “
Consumer Perceived Value: The Development of a Multiple Item Scale
,”
J. Retail.
,
77
(
2
), pp.
203
220
.
97.
Menold
,
J.
,
Jablokow
,
K.
, and
Simpson
,
T.
,
2017
, “
Prototype for X (PFX): A Holistic Framework for Structuring Prototyping Methods to Support Engineering Design
,”
Des. Studies
,
50
, pp.
70
112
.
98.
Napierala
,
M. A.
,
2012
, “
What Is the Bonferroni Correction?
AAOS Now
,
4
(
1
), pp.
41
45
.
99.
Greenhouse
,
S. W.
, and
Geisser
,
S.
,
1959
, “
On Methods in the Analysis of Profile Data
,”
Psychometrika
,
24
(
2
), pp.
95
112
.
100.
Bruggen
,
A.
,
2015
, “
An Empirical Investigation of the Relationship Between Workload and Performance
,”
Manage. Decis.
,
53
(
10
), pp.
2377
2389
.
101.
Stigler
,
S. M.
,
2005
, “
Correlation and Causation: A Comment
,”
Perspect. Biol. Med.
,
48
(
1
), pp.
88
S94
.
102.
Hardin
,
L. E.
,
2003
, “
Problem-Solving Concepts and Theories
,”
J. Veterinary Med. Educ.
,
30
(
3
), pp.
226
229
.
103.
Dorst
,
K.
,
2019
, “
Co-Evolution and Emergence in Design
,”
Des. Studies
,
65
(
1
), pp.
60
77
.
104.
Takeda
,
H.
,
Veerkamp
,
P.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
,
1990
, “
Modeling Design Processes
,”
AI Mag.
,
11
(
4
), pp.
37
48
.
105.
Mostow
,
J.
,
1985
, “
Toward Better Models of the Design Process
,”
AI Mag.
,
6
(
1
), pp.
44
44
.
You do not currently have access to this content.