Abstract

In autonomous excavation, design and optimization of the unmanned cable shovels (UCS) are important issues in the full life cycle of the equipment. However, the design of physical structure and control system of the UCS are performed at different stages, which makes it difficult for traditional sequential optimization strategy to generate global optimal solution. To enhance the working performance of the UCS, in this article, a multistage multiobjective (MSMO) co-design optimization strategy is proposed to perform global optimization considering excavation and loading processes by simultaneous optimization for the structure and control parameters of UCS. Under this framework, first, a point-to-point motion model based on 4-5-4 piecewise polynomial is proposed to describe the motion trajectory, and the dynamical model of the working device is established to predict the energy consumption in the working process. Then, the physical and geometric constraints in practical working are analyzed, and a multiobjective optimization model considering excavation and loading processes is established to improve mining efficiency and reduce energy consumption in unmanned excavation scenarios. Finally, the structural and control parameters are optimized synchronously to generate optimal physical structure, excavation, and loading trajectory. Numerical results show that the proposed MSMO co-design method can further improve the operational performance of UCS compared with the traditional optimization strategy.

References

1.
Wei
,
B.
,
Gao
,
F.
,
Chen
,
J.
,
He
,
J.
, and
Zhao
,
X.
,
2011
, “
A Method for Selecting Driving System Parameters of a New Electric Shovel’s Excavating Mechanism With Three-DOF
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
11
), pp.
2661
2672
.
2.
Rodríguez
,
J.
,
Morán
,
L.
,
Pontt
,
J.
,
Espinoza
,
J.
,
Díaz
,
R.
, and
Silva
,
E.
,
2004
, “
Operating Experience of Shovel Drives for Mining Applications
,”
IEEE Trans. Ind. Appl.
,
40
(
2
), pp.
664
671
.
3.
Patnayak
,
S.
, and
Tannant
,
D. D.
,
2005
, “
Performance Monitoring of Electric Cable Shovels
,”
Int. J. Surf. Min., Reclam. Environ.
,
19
(
4
), pp.
276
294
.
4.
Frimpong
,
S.
, and
Hu
,
Y.
,
2008
, “
Intelligent Cable Shovel Excavation Modeling and Simulation
,”
Int. J. Geomech.
,
8
(
1
), pp.
2
10
.
5.
Kim
,
Y. B.
,
Ha
,
J.
,
Kang
,
H.
,
Kim
,
P. Y.
,
Park
,
J.
, and
Park
,
F. C.
,
2013
, “
Dynamically Optimal Trajectories for Earthmoving Excavators
,”
Autom. Constr.
,
35
, pp.
568
578
.
6.
Matthew
,
D.
, and
Peter
,
C.
,
2006
, “
Autonomous Excavation Using a Rope Shovel
,”
J. F. Robot.
,
23
(
6–7
), pp.
379
394
.
7.
Zhang
,
L.
,
Zhao
,
J.
,
Long
,
P.
,
Wang
,
L.
,
Qian
,
L.
, and
Lu
,
F.
,
2021
, “
An Autonomous Excavator System for Material Loading Tasks
,”
Sci. Robot.
,
6
(
55
), p.
eabc3164
.
8.
Awuah-Offei
,
K.
, and
Frimpong
,
S.
,
2007
, “
Cable Shovel Digging Optimization for Energy Efficiency
,”
Mech. Mach. Theory
,
42
(
8
), pp.
995
1006
.
9.
Song
,
X.
,
Zhang
,
T.
,
Yuan
,
Y.
,
Wang
,
X.
, and
Sun
,
W.
,
2020
, “
Multidisciplinary Co-Design Optimization of the Structure and Control Systems for Large Cable Shovel Considering Cross-Disciplinary Interaction
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
22
), pp.
4353
4365
.
10.
Yu
,
X.
,
Pang
,
X.
,
Zou
,
Z.
,
Zhang
,
G.
,
Hu
,
Y.
,
Dong
,
J.
, and
Song
,
H.
,
2019
, “
Lightweight and High-Strength Design of an Excavator Bucket Under Uncertain Loading
,”
Math. Probl. Eng.
,
2019
, pp.
1
12
.
11.
Fu
,
G. Z.
,
Huang
,
H. Z.
,
Li
,
Y. F.
,
Zheng
,
B.
, and
Jin
,
T.
,
2018
, “
Multi-Objective Design Optimization for a Two-Stage Transmission System Under Heavy Load Condition
,”
Mech. Mach. Theory
,
122
, pp.
308
325
.
12.
Wang
,
X.
,
Song
,
X.
,
Sun
,
W.
,
Sun
,
C.
, and
Liu
,
Z.
,
2020
, “
Surrogate Based Co-Design for Combined Structure and Control Design Problems
,”
IEEE Access
,
8
, pp.
184851
184865
.
13.
Cho
,
T. M.
, and
Lee
,
B. C.
,
2011
, “
Reliability-Based Design Optimization Using Convex Linearization and Sequential Optimization and Reliability Assessment Method
,”
Struct. Saf.
,
33
(
1
), pp.
42
50
.
14.
Salama
,
M.
,
Garba
,
J.
, and
Demsetz
,
L.
,
1988
, “
Simultaneous Optimization of Controlled Structures
,”
Comput. Mech.
,
3
(
4
), pp.
275
282
.
15.
Yuan
,
Y.
,
Lv
,
L.
,
Wang
,
S.
, and
Song
,
X.
,
2020
, “
Multidisciplinary Co-Design Optimization of Structural and Control Parameters for Bucket Wheel Reclaimer
,”
Front. Mech. Eng.
,
15
(
3
), pp.
406
416
.
16.
Wang
,
X.
,
Sun
,
W.
,
Li
,
E.
, and
Song
,
X.
,
2018
, “
Energy-Minimum Optimization of the Intelligent Excavating Process for Large Cable Shovel Through Trajectory Planning
,”
Struct. Multidiscip. Optim.
,
58
(
5
), pp.
2219
2237
.
17.
Wang
,
X.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Surrogate Based Trajectory Planning Method for an Unmanned Electric Shovel
,”
Mech. Mach. Theory
,
158
, p.
104230
.
18.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
IEEE Proceedings of American Control Conference
,
Arlington, VA
,
June 25–27
.
19.
Patil
,
R.
,
Filipi
,
Z.
, and
Fathy
,
H.
,
2012
, “
Computationally Efficient Combined Plant Design and Controller Optimization Using a Coupling Measure
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071008
.
20.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
21.
Lambe
,
A. B.
, and
Martins
,
J. R. R. A.
,
2012
, “
Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
273
284
.
22.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
23.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
, pp.
1
23
.
24.
Kodiyalam
,
S.
,
Yang
,
R. J.
,
Gu
,
L.
, and
Tho
,
C. H.
,
2004
, “
Multidisciplinary Design Optimization of a Vehicle System in a Scalable, High Performance Computing Environment
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
256
263
.
25.
Neu
,
W. L.
,
Masonf
,
W. H.
,
Ni
,
S.
,
Lin
,
Z.
,
Dasgupta
,
A.
, and
Chen
,
Y.
,
2000
, “
A Multidisciplinary Design Optimization Scheme for Containerships
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
.
26.
Ceruti
,
A.
,
2019
, “
Meta-Heuristic Multidisciplinary Design Optimization of Wind Turbine Blades Obtained From Circular Pipes
,”
Eng. Comput.
,
35
(
2
), pp.
363
379
.
27.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
28.
Ali
,
A.
, and
Dhingra
,
A. K.
,
2015
, “
Combined Topology and Sizing Optimization of Actively Controlled Structures
,”
Eng. Optim.
,
47
(
1
), pp.
55
71
.
29.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Decomposition-Based Optimization Algorithm for Combined Plant and Control Design of Interconnected Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061703
.
30.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2022
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
31.
Sun
,
W.
,
Wang
,
X.
,
Wang
,
L.
,
Zhang
,
J.
, and
Song
,
X.
,
2016
, “
Multidisciplinary Design Optimization of Tunnel Boring Machine Considering Both Structure and Control Parameters Under Complex Geological Conditions
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
1073
1092
.
32.
Alavi
,
A.
,
Dolatabadi
,
M.
,
Mashhadi
,
J.
, and
Noroozinejad Farsangi
,
E.
,
2021
, “
Simultaneous Optimization Approach for Combined Control–Structural Design Versus the Conventional Sequential Optimization Method
,”
Struct. Multidiscip. Optim.
,
63
(
3
), pp.
1367
1383
.
33.
Chen
,
X.
,
Li
,
C.
,
Hu
,
R.
,
Liu
,
N.
, and
Zhang
,
C.
,
2021
, “
Integrated Optimization of Structure and Control Parameters for the Height Control System of a Vertical Spindle Cotton Picker
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
12
.
34.
Zhang
,
T.
,
Fu
,
T.
,
Song
,
X.
, and
Qu
,
F.
,
2022
, “
Multi-Objective Excavation Trajectory Optimization for Unmanned Electric Shovels Based on Pseudospectral Method
,”
Autom. Constr.
,
136
, p.
104176
.
35.
Bi
,
Q.
,
Wang
,
G.
,
Wang
,
Y.
,
Yao
,
Z.
, and
Hall
,
R.
,
2020
, “
Digging Trajectory Optimization for Cable Shovel Robotic Excavation Based on a Multi-Objective Genetic Algorithm
,”
Energies
,
13
(
12
), p.
3118
.
You do not currently have access to this content.