Abstract

In this article, the synthesis of any specified planar compliance with a serial elastic mechanism having previously determined link lengths is addressed. For a general n-joint serial mechanism, easily assessed necessary conditions on joint locations for the realization of a given compliance are identified. Geometric construction-based synthesis procedures for five-joint and six-joint serial mechanisms having kinematically redundant fixed link lengths are developed. By using these procedures, a given serial manipulator can achieve a large set of different compliant behaviors by using variable stiffness actuation and by adjusting the mechanism configuration.

References

1.
Ham
,
R. V.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
2.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
London, UK
.
3.
Dimentberg
,
F. M.
,
1965
, “
The Screw Calculus and Its Applications in Mechanics
,”
Foreign Technology Division, Wright-Patterson Air Force Base
,
Dayton, OH
,
Document No. FTD-HT-23-1632-67
.
4.
Griffis
,
M.
, and
Duffy
,
J.
,
1991
, “
Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,”
ASME J. Mech. Des.
,
113
(
4
), pp.
508
515
.
5.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
.
6.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2000
, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
146
156
.
7.
Chen
,
S.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
8.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
955
958
.
9.
Klimchik
,
A.
,
Pashkevich
,
A.
,
Caro
,
S.
, and
Chablat
,
D.
,
2012
, “
Stiffness Matrix of Manipulators With Passive Joints: Computational Aspects
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
955
958
.
10.
Loncaric
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.
11.
Zefran
,
M.
, and
Kumar
,
V.
,
2002
, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
30
38
.
12.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
14
(
3
), pp.
466
475
.
13.
Roberts
,
R. G.
,
1999
, “
Minimal Realization of a Spatial Stiffness Matrix With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
953
958
.
14.
Ciblak
,
N.
, and
Lipkin
,
H.
,
1999
, “
Synthesis of Cartesian Stiffness for Robotic Applications
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, pp.
2147
2152
.
15.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2002
, “
The Duality in Spatial Stiffness and Compliance as Realized in Parallel and Serial Elastic Mechanisms
,”
ASME J. Dyn. Syst. Measure. Control
,
124
(
1
), pp.
76
84
.
16.
Choi
,
K.
,
Jiang
,
S.
, and
Li
,
Z.
,
2002
, “
Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
264
284
.
17.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Screw System Approach to Physical Realization of Stiffness Matrix With Arbitrary Rank
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021007
.
18.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
764
780
.
19.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
757
775
.
20.
Wen
,
K.
,
Shin
,
C.-B.
,
Seo
,
T.-W.
, and
Lee
,
J.-W.
,
2016
, “
Stiffness Synthesis of 3-DOF Planar 3RPR Parallel Mechanisms
,”
Robotica
,
34
(
12
), pp.
2776
2787
.
21.
Su
,
H.-J.
,
Dorozhin
,
D.
, and
Vance
,
J.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
22.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
23.
Du
,
Y.
,
Li
,
T.
,
Ji
,
W.
,
Jiang
,
Y.
, and
Li
,
F.
,
2016
, “
Compliance Modeling of Planar Flexure-Based Mechanisms and Its Application to Micro-Motion Stages
,”
Int. J. Adv. Rob. Syst.
,
13
(
4
), pp.
1
11
.
24.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
.
25.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011004
.
26.
Kirmse
,
S.
,
Campanile
,
L. F.
, and
Hasse
,
A.
,
2021
, “
Synthesis of Compliant Mechanisms With Selective Compliance—An Advanced Procedure
,”
Mech. Mach. Theory
,
157
, p.
104184
.
27.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2017
, “
Geometric Construction-Based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051006
.
28.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Approach to the Realization of Planar Elastic Behaviors With Mechanisms Having Four Elastic Components
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041004
.
29.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2019
, “
Geometry Based Synthesis of Planar Compliances With Redundant Mechanisms Having Five Compliant Components
,”
Mech. Mach. Theory
,
134
, pp.
645
666
.
30.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2020
, “
Synthesis of Planar Compliances With Mechanisms Having Six Compliant Components: Geometric Approach
,”
ASME J. Mech. Rob.
,
12
(
June
), p.
031013
.
31.
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2016
, “
Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061005
.
32.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
33.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2022
, “
The Relationship Between Mechanism Geometry and the Centers of Stiffness and Compliance
,”
Mech. Mach. Theory
,
167
, p.
104565
.
You do not currently have access to this content.