Abstract

Design for remanufacturing (DfRem) is one attractive strategy that encourages the reuse of a product and extends the product's life cycle. Traditional design processes often only consider product reliability at an early design stage. However, from the perspective of environmental sustainability, it is becoming increasingly important to evaluate the long-term economic and environmental impacts of design decisions during early-stage design. We propose a bi-level DfRem framework consisting of system-level reusability allocation and component-level design tradeoff analysis, considering reliability and product warranty policy. First, a system-level reusability allocation problem aims at a theoretical exploration of the design space where all the components comprising the system are allocated certain reuse rates to achieve target energy savings with minimum cost. Following the theoretical exploration at the system level, a component-level analysis looks at practical design options for each component and trades-off between the overall cost and energy consumption for multiple remanufacturing cycles. Both levels of the framework require modeling component reuse for multiple remanufacturing cycles, which we achieve by using a branched power-law model that provides probabilistic scenarios of reusing the component or replacing it with a new part. We demonstrate the utility of this framework with the case study of an infinitely variable transmission (IVT) used by some agricultural machines manufactured by John Deere and show snapshots of a prototype software tool that we developed for easy use by designers.

References

1.
Vergragt
,
P.
,
Akenji
,
L.
, and
Dewick
,
P.
,
2014
, “
Sustainable Production, Consumption, and Livelihoods: Global and Regional Research Perspectives
,”
J. Clean. Prod.
,
63
, pp.
1
12
.
2.
Domenech
,
T.
, and
Bahn-Walkowiak
,
B.
,
2019
, “
Transition Towards a Resource Efficient Circular Economy in Europe: Policy Lessons From the EU and the Member States
,”
Ecol. Econ.
,
155
, pp.
7
19
.
3.
McDowall
,
W.
,
Geng
,
Y.
,
Huang
,
B.
,
Barteková
,
E.
,
Bleischwitz
,
R.
,
Türkeli
,
S.
,
Kemp
,
R.
, and
Doménech
,
T.
,
2017
, “
Circular Economy Policies in China and Europe
,”
J. Ind. Ecol.
,
21
(
3
), pp.
651
661
.
4.
Lieder
,
M.
, and
Rashid
,
A.
,
2016
, “
Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry
,”
J. Clean. Prod.
,
115
, pp.
36
51
.
5.
Liao
,
H.
,
Deng
,
Q.
, and
Wang
,
Y.
,
2017
, “
Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System Under Uncertainties in Procurement and Demand
,”
Sustainability
,
9
(
3
), p.
338
.
6.
Mathur
,
A.
, and
Morris
,
A. C.
,
2014
, “
Distributional Effects of a Carbon Tax in Broader U.S. Fiscal Reform
,”
Energy Policy
,
66
, pp.
326
334
.
7.
Shen
,
N.
,
Liao
,
H.
,
Deng
,
R.
, and
Wang
,
Q.
,
2019
, “
Different Types of Environmental Regulations and the Heterogeneous Influence on the Environmental Total Factor Productivity: Empirical Analysis of China’s Industry
,”
J. Clean. Prod.
,
211
, pp.
171
184
.
8.
US EPA
,
2017
, “
National Overview: Facts and Figures on Materials, Wastes and Recycling
https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials, Accessed October 13, 2021.
9.
Sarkis
,
J.
,
1995
, “
Manufacturing Strategy and Environmental Consciousness
,”
Technovation
,
15
(
2
), pp.
79
97
.
10.
Thierry
,
M.
,
Salomon
,
M.
,
Van Nunen
,
J.
, and
Van Wassenhove
,
L.
,
1995
, “
Strategic Issues in Product Recovery Management
,”
Calif. Manage. Rev.
,
37
(
2
), pp.
114
136
.
11.
Singh
,
J.
, and
Ordoñez
,
I.
,
2016
, “
Resource Recovery From Post-Consumer Waste: Important Lessons for the Upcoming Circular Economy
,”
J. Clean. Prod.
,
134
, pp.
342
353
.
12.
Smith
,
V. M.
, and
Keoleian
,
G. A.
,
2004
, “
The Value of Remanufactured Engines: Life-Cycle Environmental and Economic Perspectives
,”
J. Ind. Ecol.
,
8
(
1–2
), pp.
193
221
.
13.
Boustani
,
A.
,
Sahni
,
S.
,
Graves
,
S. C.
, and
Gutowski
,
T. G.
,
2010
, “
Appliance Remanufacturing and Life Cycle Energy and Economic Savings
,”
Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology
,
Arlington, VA
,
May 17–19
, pp.
1
6
.
14.
Goepp
,
V.
,
Zwolinski
,
P.
, and
Caillaud
,
E.
,
2014
, “
Design Process and Data Models to Support the Design of Sustainable Remanufactured Products
,”
Comput. Ind.
,
65
(
3
), pp.
480
490
.
15.
Ijomah
,
W. L.
,
Childe
,
S.
, and
McMahon
,
C.
,
2004
, “
Remanufacturing: A Key Strategy for Sustainable Development
,”
Proceedings of the 3rd International Conference on Design and Manufacture for Sustainable Development
,
Hyderabad, India
,
Sept. 24–26
.
16.
Jiang
,
Z.
,
Ding
,
Z.
,
Zhang
,
H.
,
Cai
,
W.
, and
Liu
,
Y.
,
2019
, “
Data-Driven Ecological Performance Evaluation for Remanufacturing Process
,”
Energy Convers. Manag.
,
198
, p.
111844
.
17.
Das
,
K.
, and
Rao Posinasetti
,
N.
,
2015
, “
Addressing Environmental Concerns in Closed Loop Supply Chain Design and Planning
,”
Int. J. Prod. Econ.
,
163
, pp.
34
47
.
18.
Geyer
,
R.
,
Van Wassenhove
,
L. N.
, and
Atasu
,
A.
,
2007
, “
The Economics of Remanufacturing Under Limited Component Durability and Finite Product Life Cycles
,”
Manag. Sci.
,
53
(
1
), pp.
88
100
.
19.
Lund
,
R. T.
,
1984
, “
Remanufacturing: The Experience of the United States and Implications for Developing Countries
,” No. WTP31, pp. 1–126, Washington, DC, World Bank.
20.
Kerr
,
W.
, and
Ryan
,
C.
,
2001
, “
Eco-Efficiency Gains From Remanufacturing: A Case Study of Photocopier Remanufacturing at Fuji Xerox Australia
,”
J. Clean. Prod.
,
9
(
1
), pp.
75
81
.
21.
Mukherjee
,
K.
, and
Mondal
,
S.
,
2009
, “
Analysis of Issues Relating to Remanufacturing Technology—A Case of an Indian Company
,”
Technol. Anal. Strateg. Manag.
,
21
(
5
), pp.
639
652
.
22.
Ferrer
,
G.
,
1997
, “
The Economics of Personal Computer Remanufacturing
,”
Resour. Conserv. Recycl.
,
21
(
2
), pp.
79
108
.
23.
Boustani
,
A.
,
Sahni
,
S.
,
Gutowski
,
T.
, and
Graves
,
S.
,
2010
, “
Appliance Remanufacturing and Energy Savings
,” Environmentally Benign Manufacturing Laboratory, Sloan School of Management, MITEI.
24.
Sutherland
,
J. W.
,
Adler
,
D. P.
,
Haapala
,
K. R.
, and
Kumar
,
V.
,
2008
, “
A Comparison of Manufacturing and Remanufacturing Energy Intensities With Application to Diesel Engine Production
,”
CIRP Ann.
,
57
(
1
), pp.
5
8
.
25.
Yang
,
S. S.
,
Ngiam
,
H. Y.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2015
, “
The Impact of Automotive Product Remanufacturing on Environmental Performance
,”
Procedia CIRP
,
29
, pp.
774
779
.
26.
Liu
,
B.
,
Chen
,
D.
,
Zhou
,
W.
,
Nasr
,
N.
,
Wang
,
T.
,
Hu
,
S.
, and
Zhu
,
B.
,
2018
, “
The Effect of Remanufacturing and Direct Reuse on Resource Productivity of China’s Automotive Production
,”
J. Clean. Prod.
,
194
, pp.
309
317
.
27.
Amaya
,
J.
,
Zwolinski
,
P.
, and
Brissaud
,
D.
,
2010
, “
Environmental Benefits of Parts Remanufacturing: The Truck Injector Case
,”
17th CIRP International Conference on Life Cycle Engineering
,
Hefei, China
,
May 19–21
.
28.
Deng
,
Q.
,
Liu
,
X.
, and
Liao
,
H.
,
2015
, “
Identifying Critical Factors in the Eco-Efficiency of Remanufacturing Based on the Fuzzy DEMATEL Method
,”
Sustainability
,
7
(
11
), pp.
15527
15547
.
29.
Su
,
C.
,
Shi
,
Y.
, and
Dou
,
J.
,
2017
, “
Multi-Objective Optimization of Buffer Allocation for Remanufacturing System Based on TS-NSGAII Hybrid Algorithm
,”
J. Clean. Prod.
,
166
, pp.
756
770
.
30.
Matsumoto
,
M.
,
Yang
,
S.
,
Martinsen
,
K.
, and
Kainuma
,
Y.
,
2016
, “
Trends and Research Challenges in Remanufacturing
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
3
(
1
), pp.
129
142
.
31.
Chen
,
H. Q.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2013
, “
Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061007
.
32.
Jaca
,
C.
,
Prieto-Sandoval
,
V.
,
Psomas
,
E. L.
, and
Ormazabal
,
M.
,
2018
, “
What Should Consumer Organizations Do to Drive Environmental Sustainability?
,”
J. Clean. Prod.
,
181
, pp.
201
208
.
33.
Liao
,
H.
,
Shen
,
N.
, and
Wang
,
Y.
,
2020
, “
Design and Realisation of an Efficient Environmental Assessment Method for 3R Systems: A Case Study on Engine Remanufacturing
,”
Int. J. Prod. Res.
,
58
(
19
), pp.
5980
6003
.
34.
Zhang
,
X.
,
Zhang
,
S.
,
Zhang
,
L.
,
Xue
,
J.
,
Sa
,
R.
, and
Liu
,
H.
,
2019
, “
Identification of Product’s Design Characteristics for Remanufacturing Using Failure Modes Feedback and Quality Function Deployment
,”
J. Clean. Prod.
,
239
, p.
117967
.
35.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Optimal Modular Remanufactured Product Configuration and Harvesting Planning for End-of-Life Products
,”
ASME J. Mech. Des.
,
144
(
4
), p.
042001
.
36.
Nasr
,
N.
, and
Thurston
,
M.
,
2006
, “
Remanufacturing: A Key Enabler to Sustainable Product Systems
,”
13th CIRP International Conference on Life Cycle Engineering
,
Leuven, Belgium
,
May 31–June 2
.
37.
Ijomah
,
W. L.
,
McMahon
,
C. A.
,
Hammond
,
G. P.
, and
Newman
,
S. T.
,
2007
, “
Development of Design for Remanufacturing Guidelines to Support Sustainable Manufacturing
,”
Robot. Comput.-Integr. Manuf.
,
23
(
6
), pp.
712
719
.
38.
Zwolinski
,
P.
, and
Brissaud
,
D.
,
2008
, “
Remanufacturing Strategies to Support Product Design and Redesign
,”
J. Eng. Des.
,
19
(
4
), pp.
321
335
.
39.
Gray
,
C.
, and
Charter
,
M.
,
2007
, “
Remanufacturing and Product Design: Designing for the 7th Generation
,” Centre for Sustainable Design, Project Report, Farnham, Surrey, UK.
40.
Yang
,
S. S.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2015
, “Product Design for Remanufacturing,”
Handbook of Manufacturing Engineering and Technology
,
A. Y. C.
Nee
, ed.,
Springer
,
London
, pp.
3195
3217
.
41.
Hatcher
,
G. D.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F. C.
,
2011
, “
Design for Remanufacture: A Literature Review and Future Research Needs
,”
J. Clean. Prod.
,
19
(
17
), pp.
2004
2014
.
42.
Zwolinski
,
P.
,
Lopez-Ontiveros
,
M.-A.
, and
Brissaud
,
D.
,
2006
, “
Integrated Design of Remanufacturable Products Based on Product Profiles
,”
J. Clean. Prod.
,
14
(
15
), pp.
1333
1345
.
43.
Hatcher
,
G. D.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F. C.
,
2014
, “
A Network Model to Assist ‘Design for Remanufacture’ Integration Into the Design Process
,”
J. Clean. Prod.
,
64
, pp.
244
253
.
44.
Lindkvist Haziri
,
L.
, and
Sundin
,
E.
,
2020
, “
Supporting Design for Remanufacturing—A Framework for Implementing Information Feedback From Remanufacturing to Product Design
,”
J. Remanuf.
,
10
(
1
), pp.
57
76
.
45.
Yang
,
S. S.
,
Nasr
,
N.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2017
, “
Designing Automotive Products for Remanufacturing From Material Selection Perspective
,”
J. Clean. Prod.
,
153
, pp.
570
579
.
46.
Zhang
,
X.
,
Ao
,
X.
,
Jiang
,
Z.
,
Zhang
,
H.
, and
Cai
,
W.
,
2019
, “
A Remanufacturing Cost Prediction Model of Used Parts Considering Failure Characteristics
,”
Robot. Comput.-Integr. Manuf.
,
59
, pp.
291
296
.
47.
Kwak
,
M.
, and
Kim
,
H.
,
2015
, “
Design for Life-Cycle Profit With Simultaneous Consideration of Initial Manufacturing and End-of-Life Remanufacturing
,”
Eng. Optim.
,
47
(
1
), pp.
18
35
.
48.
Liu
,
Z.
,
Jiang
,
Q.
,
Li
,
T.
,
Dong
,
S.
,
Yan
,
S.
,
Zhang
,
H.
, and
Xu
,
B.
,
2016
, “
Environmental Benefits of Remanufacturing: A Case Study of Cylinder Heads Remanufactured Through Laser Cladding
,”
J. Clean. Prod.
,
133
, pp.
1027
1033
.
49.
Zhang
,
X.
,
Ao
,
X.
,
Cai
,
W.
,
Jiang
,
Z.
, and
Zhang
,
H.
,
2019
, “
A Sustainability Evaluation Method Integrating the Energy, Economic and Environment in Remanufacturing Systems
,”
J. Clean. Prod.
,
239
, p.
118100
.
50.
Kwak
,
M.
, and
Kim
,
H.
,
2016
, “
Modeling the Time-Varying Advantages of a Remanufactured Product: Is ‘Reman’ Better Than ‘Brand New’?1
,”
ASME J. Mech. Des.
,
138
(
5
), p.
051701
.
51.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
591
.
52.
Hoogmartens
,
R.
,
Van Passel
,
S.
,
Van Acker
,
K.
, and
Dubois
,
M.
,
2014
, “
Bridging the Gap Between LCA, LCC and CBA as Sustainability Assessment Tools
,”
Environ. Impact Assess. Rev.
,
48
, pp.
27
33
.
53.
Zhang
,
X.
,
Zhang
,
M.
,
Zhang
,
H.
,
Jiang
,
Z.
,
Liu
,
C.
, and
Cai
,
W.
,
2020
, “
A Review on Energy, Environment and Economic Assessment in Remanufacturing Based on Life Cycle Assessment Method
,”
J. Clean. Prod.
,
255
, p.
120160
.
54.
Seow
,
Y.
,
Goffin
,
N.
,
Rahimifard
,
S.
, and
Woolley
,
E.
,
2016
, “
A ‘Design for Energy Minimization’ Approach to Reduce Energy Consumption During the Manufacturing Phase
,”
Energy
,
109
, pp.
894
905
.
55.
Zhang
,
H.
, and
Haapala
,
K. R.
,
2015
, “
Integrating Sustainable Manufacturing Assessment Into Decision Making for a Production Work Cell
,”
J. Clean. Prod.
,
105
, pp.
52
63
.
56.
Kremer
,
G. E.
,
Haapala
,
K.
,
Murat
,
A.
,
Chinnam
,
R. B.
,
Kim
,
K.
,
Monplaisir
,
L.
, and
Lei
,
T.
,
2016
, “
Directions for Instilling Economic and Environmental Sustainability Across Product Supply Chains
,”
J. Clean. Prod.
,
112
, pp.
2066
2078
.
57.
Fatimah
,
Y. A.
, and
Biswas
,
W. K.
,
2016
, “
Remanufacturing as a Means for Achieving Low-Carbon SMEs in Indonesia
,”
Clean Technol. Environ. Policy
,
18
(
8
), pp.
2363
2379
.
58.
Hauschild
,
M.
,
Jeswiet
,
J.
, and
Alting
,
L.
,
2005
, “
From Life Cycle Assessment to Sustainable Production: Status and Perspectives
,”
CIRP Ann.
,
54
(
2
), pp.
1
21
.
59.
Lee
,
C.-M.
,
Woo
,
W.-S.
, and
Roh
,
Y.-H.
,
2017
, “
Remanufacturing: Trends and Issues
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
4
(
1
), pp.
113
125
.
60.
Wilson
,
J. M.
,
Piya
,
C.
,
Shin
,
Y. C.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Remanufacturing of Turbine Blades by Laser Direct Deposition With Its Energy and Environmental Impact Analysis
,”
J. Clean. Prod.
,
80
, pp.
170
178
.
61.
Liu
,
Z.
,
Li
,
T.
,
Jiang
,
Q.
, and
Zhang
,
H.
,
2014
, “
Life Cycle Assessment–Based Comparative Evaluation of Originally Manufactured and Remanufactured Diesel Engines
,”
J. Ind. Ecol.
,
18
(
4
), pp.
567
576
.
62.
Du
,
Y.
, and
Li
,
C.
,
2014
, “
Implementing Energy-Saving and Environmental-Benign Paradigm: Machine Tool Remanufacturing by OEMs in China
,”
J. Clean. Prod.
,
66
, pp.
272
279
.
63.
Govindan
,
K.
,
Jiménez-Parra
,
B.
,
Rubio
,
S.
, and
Vicente-Molina
,
M.-A.
,
2019
, “
Marketing Issues for Remanufactured Products
,”
J. Clean. Prod.
,
227
, pp.
890
899
.
64.
Qiao
,
H.
, and
Su
,
Q.
,
2021
, “
Impact of Government Subsidy on the Remanufacturing Industry
,”
Waste Manag.
,
120
, pp.
433
447
.
65.
Wu
,
C.-H.
,
2013
, “
OEM Product Design in a Price Competition With Remanufactured Product
,”
Omega
,
41
(
2
), pp.
287
298
.
66.
Diener
,
D. L.
, and
Tillman
,
A.-M.
,
2015
, “
Component End-of-Life Management: Exploring Opportunities and Related Benefits of Remanufacturing and Functional Recycling
,”
Resour. Conserv. Recycl.
,
102
, pp.
80
93
.
67.
Gutowski
,
T. G.
,
Sahni
,
S.
,
Boustani
,
A.
, and
Graves
,
S. C.
,
2011
, “
Remanufacturing and Energy Savings
,” ACS Publ. [Online], https://pubs.acs.org/doi/pdf/10.1021/es102598b, Accessed January 18, 2022.
68.
Iraldo
,
F.
,
Facheris
,
C.
, and
Nucci
,
B.
,
2017
, “
Is Product Durability Better for Environment and for Economic Efficiency? A Comparative Assessment Applying LCA and LCC to Two Energy-Intensive Products
,”
J. Clean. Prod.
,
140
, pp.
1353
1364
.
69.
Boorsma
,
N.
,
Balkenende
,
R.
,
Bakker
,
C.
,
Tsui
,
T.
, and
Peck
,
D.
,
2021
, “
Incorporating Design for Remanufacturing in the Early Design Stage: A Design Management Perspective
,”
J. Remanuf.
,
11
(
1
), pp.
25
48
.
70.
Cheng
,
Y.
, and
Du
,
X.
,
2016
, “
System Reliability Analysis With Dependent Component Failures During Early Design Stage—A Feasibility Study
,”
ASME J. Mech. Des.
,
138
(
5
), p.
051405
.
71.
Ye
,
Y.
,
Jankovic
,
M.
,
Kremer
,
G. E.
,
Yannou
,
B.
,
Leroy
,
Y.
, and
Bocquet
,
J.-C.
,
2016
, “
Integration of Environmental Impact Estimation in System Architecture and Supplier Identification
,”
Res. Eng. Des.
,
27
(
2
), pp.
117
140
.
72.
Aydin
,
R.
,
Kwong
,
C. K.
,
Geda
,
M. W.
, and
Okudan Kremer
,
G. E.
,
2018
, “
Determining the Optimal Quantity and Quality Levels of Used Product Returns for Remanufacturing Under Multi-Period and Uncertain Quality of Returns
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9
), pp.
4401
4414
.
73.
Jiang
,
Z.
,
Zhou
,
T.
,
Zhang
,
H.
,
Wang
,
Y.
,
Cao
,
H.
, and
Tian
,
G.
,
2016
, “
Reliability and Cost Optimization for Remanufacturing Process Planning
,”
J. Clean. Prod.
,
135
, pp.
1602
1610
.
74.
Anityasari
,
M.
, and
Kaebernick
,
H.
,
2008
, “
A Concept of Reliability Evaluation for Reuse and Remanufacturing
,”
Int. J. Sustain. Manuf.
,
1
(
1–2
), pp.
3
17
.
75.
Nemani
,
V.
,
Liu
,
J.
,
Ahmed
,
N.
,
Cartwright
,
A.
,
Kremer
,
G.
, and
Hu
,
C.
,
2021
, “
Reliability-Informed Economic and Energy Evaluation for Design for Remanufacturing: A Case Study on a Hydraulic Manifold
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–20
.
76.
Li
,
M.
,
Nemani
,
V. P.
,
Liu
,
J.
,
Lee
,
M. A.
,
Ahmed
,
N.
,
Kremer
,
G. E.
, and
Hu
,
C.
,
2021
, “
Reliability-Informed Life Cycle Warranty Cost and Life Cycle Analysis of Newly Manufactured and Remanufactured Units
,”
ASME J. Mech. Des.
,
143
(
11
), p.
112001
.
77.
Li
,
M.
,
Liu
,
J.
,
Nemani
,
V.
,
Ahmed
,
N.
,
Kremer
,
G.
, and
Hu
,
C.
,
2020
, “
Reliability-Informed Life-Cycle Warranty Cost Analysis: A Case Study on a Transmission in Agricultural Equipment
,”
25th Design for Manufacturing and the Life Cycle Conference
,
Virtual, Online
,
Aug. 17–19
.
78.
Jiang
,
Z. H.
,
Shu
,
L. H.
, and
Benhabib
,
B.
,
2000
, “
Reliability Analysis of Non-Constant-Size Part Populations in Design for Remanufacture
,”
ASME J. Mech. Des.
,
122
(
2
), pp.
172
178
.
79.
Murayama
,
T.
, and
Shu
,
L. H.
,
2001
, “
Treatment of Reliability for Reuse and Remanufacture
,”
Proceedings Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
,
Tokyo, Japan
,
Dec. 11–15
, pp.
287
292
.
80.
Liu
,
J.
,
Hu
,
C.
,
Nemani
,
V.
,
Li
,
M.
,
Lee
,
M. A.
, and
Ahmed
,
N.
,
2020
,
A Software Tool for Data-Driven Design Decision Support for Remanufacturing
.
81.
Robotis
,
A.
,
Boyaci
,
T.
, and
Verter
,
V.
,
2012
, “
Investing in Reusability of Products of Uncertain Remanufacturing Cost: The Role of Inspection Capabilities
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
385
395
.
82.
Nwankpa
,
C. E.
,
Ijomah
,
W.
, and
Gachagan
,
A.
,
2021
, “
Design for Automated Inspection in Remanufacturing: A Discrete Event Simulation for Process Improvement
,”
Clean. Eng. Technol.
,
4
, p.
100199
.
83.
Nwankpa
,
C.
,
Eze
,
S.
,
Ijomah
,
W.
,
Gachagan
,
A.
, and
Marshall
,
S.
,
2021
, “
Achieving Remanufacturing Inspection Using Deep Learning
,”
J. Remanuf.
,
11
(
2
), pp.
89
105
.
84.
Mettas
,
A.
,
2000
, “
Reliability Allocation and Optimization for Complex Systems
,”
Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)
,
Los Angeles, CA
,
Jan. 24–27
, pp.
216
221
.
85.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
,
Leuven, Belgium
,
May 31–June 2
, pp.
623
638
.
86.
Ishizaka
,
A.
, and
Nemery
,
P.
,
2013
,
Multi-Criteria Decision Analysis: Methods and Software
,
John Wiley & Sons
,
West Sussex, UK
.
87.
Peng
,
S.
,
Li
,
T.
,
Li
,
M.
,
Guo
,
Y.
,
Shi
,
J.
,
Tan
,
G. Z.
, and
Zhang
,
H.
,
2019
, “
An Integrated Decision Model of Restoring Technologies Selection for Engine Remanufacturing Practice
,”
J. Clean. Prod.
,
206
, pp.
598
610
.
88.
Yang
,
S. S.
,
Ong
,
S. K.
, and
Nee
,
A.Y.C.
,
2016
, “
A Decision Support Tool for Product Design for Remanufacturing
,”
Procedia CIRP
,
40
, pp.
144
149
.
89.
Abbas
,
A. E.
,
2010
, “
Constructing Multiattribute Utility Functions for Decision Analysis
,”
Risk and Optimization in an Uncertain World
, pp.
62
98
.
90.
Kittur
,
J.
,
Vijaykumar
,
S.
,
Bellubbi
,
V. P.
,
Vishal
,
P.
, and
Shankara
,
M. G.
,
2015
, “
Comparison of Different MCDM Techniques Used to Evaluate Optimal Generation
,”
2015 International Conference on Applied and Theoretical Computing and Communication Technology (ICATccT)
,
Davangere, Karnataka, India
,
Oct. 29– 31
, pp.
172
177
.
91.
Okudan
,
G. E.
, and
Tauhid
,
S.
,
2008
, “
Concept Selection Methods—A Literature Review From 1980 to 2008
,”
Int. J. Des. Eng.
,
1
(
3
), pp.
243
277
.
92.
GmbH, finanzen net
, “
Aluminium PRICE Today | Aluminium Spot Price Chart | Live Price of Aluminium per Ounce | Markets Insider
,” markets.businessinsider.com, https://markets.businessinsider.com/commodities/aluminum-price, Accessed October 31, 2021.
93.
Dalquist
,
S.
, and
Gutowski
,
T.
,
2004
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Die Casting
,”
Mass. Inst. Technol.
,
7
.
94.
Custompartnet
,
Die Casting Tooling Cost Estimator
,” https://www.custompartnet.com/estimate/die-cast-tooling/, Accessed October 31, 2021.
95.
Polgar
,
K.
,
1996
, “
Simplified Time Estimation Booklet for Basic Machining Operations. Massachusetts Institute of Technology
,”
Ph.D. thesis, M.S. thesis
,
Department of Mechanical Engineering
,
Cambridge, MA
.
96.
Anderberg
,
S. E.
,
Kara
,
S.
, and
Beno
,
T.
,
2010
, “
Impact of Energy Efficiency on Computer Numerically Controlled Machining
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
224
(
4
), pp.
531
541
.
97.
Grubbs
,
C. A.
,
1999
, “
Anodizing by Current Density—An Update
,”
Met. Finish.
,
97
(
9
), pp.
71
73
.
98.
REMADE Institute
, “
Data-Driven Design for Remanufacturing of High-Value Components in Industrial and Agricultural Equipment
,” https://remadeinstitute.org/online-training/2020/12/18/data-driven-design-for-re-x-remanufacturing- of-high-value-components-in-industrial-and-agricultural-equipment, Accessed January 20, 2022.
You do not currently have access to this content.