Abstract

To meet the increasing requirements for precision hybrid machine tools, this paper presents a geometric error propagation model-based accuracy synthesis method for parallel manipulators (PMs) with one translational and two rotational (1T2R) motion abilities. A unified geometric error propagation model of a family of 1T2R PMs is established with the first-order kinematic perturbation method. A set of geometric error propagation intensity indexes is formulated to describe the geometric error propagation characteristics in a quantitative manner. The equivalent effects of specified terminal accuracy are derived to directly determine the allowable values of all geometric source errors. Based on these, a computation algorithm is summarized for designating a tolerance allocation scheme to meet the specified terminal accuracy of a 1T2R PM. To demonstrate the accuracy synthesis method, a novel 1T2R PM with a 2UPR-1RPS (“R,” revolute joint; “U,” universal joint; “S,” spherical joint; “P,” prismatic actuated joint) topology is taken as an example to allocate geometric tolerances under the specified terminal accuracy. Following the tolerance allocation scheme, a laboratory prototype of the exemplary PM is fabricated and further experimentally measured. The measured kinematic results indicate that the prototype possesses an acceptable position error smaller than 0.15 mm, verifying the feasibility of the proposed accuracy synthesis method. Hence, the proposed method can be applied as a forward tolerance design tool to reduce the design iterations and development risks of low-mobility parallel robots.

References

1.
Uriarte
,
L.
,
Zatarain
,
M.
,
Axinte
,
D.
,
Yagüe-Fabra
,
J.
,
Ihlenfeldt
,
S.
,
Eguia
,
J.
, and
Olarra
,
A.
,
2013
, “
Machine Tools for Large Parts
,”
CIRP Ann.
,
62
(
2
), pp.
731
750
.
2.
Wang
,
F.
,
Chen
,
Q.
, and
Li
,
Q.
,
2015
, “
Optimal Design of a 2-UPR-RPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
137
(
5
), p.
054501
.
3.
Zhao
,
C.
,
Chen
,
Z.
,
Li
,
Y.
, and
Huang
,
Z.
,
2020
, “
Motion Characteristics Analysis of a Novel 2R1 T 3-UPU Parallel Mechanism
,”
ASME. J. Mech. Des.
,
142
(
1
), p.
012302
.
4.
Jin
,
Y.
,
Bi
,
Z. M.
,
Liu
,
H. T.
,
Higgins
,
C.
,
Price
,
M.
,
Chen
,
W. H.
, and
Huang
,
T.
,
2015
, “
Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041004
.
5.
Xu
,
Y.
,
Yang
,
F.
,
Xu
,
Z.
,
Yao
,
J.
,
Zhou
,
Y.
, and
Zhao
,
Y.
,
2021
, “
TriRhino: A Five-Degrees-of-Freedom of Hybrid Serial–Parallel Manipulator with all Rotating Axes Being Continuous: Stiffness Analysis and Experiments
,”
ASME. J. Mech. Rob.
,
13
(
2
), p.
025002
.
6.
Ye
,
H.
,
Wang
,
D.
,
Wu
,
J.
,
Yue
,
Y.
, and
Zhou
,
Y.
,
2020
, “
Forward and Inverse Kinematics of a 5-DOF Hybrid Robot for Composite Material Machining
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101961
.
7.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer
,
New York
.
8.
Verner
,
M.
,
Xi
,
F.
, and
Mechefske
,
C.
,
2005
, “
Optimal Calibration of Parallel Kinematic Machines
,”
ASME. J. Mech. Des.
,
127
(
1
), pp.
62
69
.
9.
Jeong
,
J. I.
,
Kang
,
D.
,
Cho
,
Y. M.
, and
Kim
,
J.
,
2004
, “
Kinematic Calibration for Redundantly Actuated Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
307
318
.
10.
He
,
L.
,
Li
,
Q.
,
Zhu
,
X.
, and
Wu
,
C.
,
2019
, “
Kinematic Calibration of a Three Degrees-of-Freedom Parallel Manipulator With a Laser Tracker
,”
ASME J. Dyn. Sys., Meas., Control.
,
141
(
3
), p.
031009
.
11.
Sun
,
T.
,
Lian
,
B.
,
Yang
,
S.
, and
Song
,
Y.
,
2020
, “
Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory
,”
IEEE Trans. Robot.
,
36
(
3
), pp.
816
834
.
12.
Jiang
,
S.
,
Chi
,
C.
,
Fang
,
H.
,
Tang
,
T.
, and
Zhang
,
J.
,
2022
, “
A Minimal-Error-Model Based Two-Step Kinematic Calibration Methodology for Redundantly Actuated Parallel Manipulators: An Application to a 3-DOF Spindle Head
,”
Mech. Mach. Theory
,
167
, p.
104532
.
13.
Song
,
Y.
,
Zhang
,
J.
,
Lian
,
B.
, and
Sun
,
T.
,
2016
, “
Kinematic Calibration of a 5-DoF Parallel Kinematic Machine
,”
Precis. Eng.
,
45
, pp.
242
261
.
14.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.
15.
Sun
,
T.
,
Wang
,
P.
,
Lian
,
B.
,
Liu
,
S.
, and
Zhai
,
Y.
,
2018
, “
Geometric Accuracy Design and Error Compensation of a One-Translational and Three-Rotational Parallel Mechanism With Articulated Traveling Plate
,”
Proc. Inst. Mech. Eng., Part B
,
232
(
12
), pp.
2083
2097
.
16.
Tang
,
X.
,
Chai
,
X.
,
Tang
,
L.
, and
Shao
,
Z.
,
2014
, “
Accuracy Synthesis of a Multi-level Hybrid Positioning Mechanism for the Feed Support System in FAST
,”
Rob. Comput. Integr. Manuf.
,
30
(
5
), pp.
565
575
.
17.
He
,
B.
,
Zhang
,
P.
, and
Hou
,
S.
,
2015
, “
Accuracy Analysis of a Spherical 3-DOF Parallel Underactuated Robot Wrist
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
395
404
.
18.
Karim
,
S.
,
Piano
,
S.
,
Leach
,
R.
, and
Tolley
,
M.
,
2018
, “
Error Modelling and Validation of a High-Precision Five Degree of Freedom Hybrid Mechanism for High-Power High-Repetition Rate Laser Operations
,”
Precis. Eng.
,
54
, pp.
182
197
.
19.
Zhuang
,
H.
,
Wang
,
L. K.
, and
Roth
,
Z. S.
,
1993
, “
Error-Model-Based Robot Calibration Using a Modified CPC Model
,”
Rob. Comput. Integr. Manuf.
,
10
(
4
), pp.
287
299
.
20.
Zhang
,
J.
,
Lian
,
B.
, and
Song
,
Y.
,
2019
, “
Geometric Error Analysis of an Over-constrained Parallel Tracking Mechanism Using the Screw Theory
,”
Chin. J. Aeronaut.
,
32
(
6
), pp.
1541
1554
.
21.
Luo
,
X.
,
Xie
,
F.
,
Liu
,
X. J.
, and
Li
,
J.
,
2019
, “
Error Modeling and Sensitivity Analysis of a Novel 5-Degree-of-Freedom Parallel Kinematic Machine Tool
,”
Proc. Inst. Mech. Eng., Part B
,
233
(
6
), pp.
1637
1652
.
22.
Aginaga
,
J.
,
Altuzarra
,
O.
,
Macho
,
E.
, and
Iriarte
,
X.
,
2013
, “
Assessing Position Error due to Clearances and Deformations of Links in Parallel Manipulators
,”
ASME. J. Mech. Des.
,
135
(
4
), p.
041006
.
23.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME. J. Mech. Rob.
,
8
(
6
), p.
061016
.
24.
Chen
,
G.
,
Kong
,
L.
,
Li
,
Q.
,
Wang
,
H.
, and
Lin
,
Z.
,
2018
, “
Complete, Minimal and Continuous Error Models for the Kinematic Calibration of Parallel Manipulators Based on POE Formula
,”
Mech. Mach. Theory
,
121
, pp.
844
856
.
25.
Kong
,
L.
,
Chen
,
G.
,
Wang
,
H.
,
Huang
,
G.
, and
Zhang
,
D.
,
2021
, “
Kinematic Calibration of a 3-PRRU Parallel Manipulator Based on the Complete, Minimal and Continuous Error Model
,”
Rob. Comput. Integr. Manuf.
,
71
, p.
102158
.
26.
Li
,
T.
,
Li
,
F.
,
Jiang
,
Y.
,
Zhang
,
J.
, and
Wang
,
H.
,
2017
, “
Kinematic Calibration of a 3-P(Pa)S Parallel-Type Spindle Head Considering the Thermal Error
,”
Mechatronics
,
43
, pp.
86
98
.
27.
Ni
,
Y.
,
Zhang
,
B.
,
Sun
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Accuracy Analysis and Design of A3 Parallel Spindle Head
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
239
249
.
28.
Goldsztejn
,
A.
,
Caro
,
S.
, and
Chabert
,
G.
,
2015
, “
A New Methodology for Tolerance Synthesis of Parallel Manipulators
,”
Proceedings of the 14th World Congress in Mechanism and Machine Science
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
132
141
.
29.
Tian
,
W.
,
Shen
,
Z.
,
Lv
,
D.
, and
Yin
,
F.
,
2020
, “
A Systematic Approach for Accuracy Design of Lower-Mobility Parallel Mechanism
,”
Robotica
,
38
(
12
), pp.
2173
2188
.
30.
Huang
,
T.
,
Chetwynd
,
D. G.
,
Mei
,
J. P.
, and
Zhao
,
X. M.
,
2006
, “
Tolerance Design of a 2-DoF Overconstrained Translational Parallel Robot
,”
IEEE Trans. Robot.
,
22
(
1
), pp.
167
172
.
31.
Wu
,
M.
,
Yue
,
X.
,
Chen
,
W.
,
Nie
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Accuracy Analysis and Synthesis of Asymmetric Parallel Mechanism Based on Sobol-QMC
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
21
), pp.
4200
4214
.
32.
Alefeld
,
G.
, and
Mayer
,
G.
,
2000
, “
Interval Analysis: Theory and Applications
,”
J. Comput. Appl. Math.
,
121
(
1
), pp.
421
464
.
33.
Liu
,
Y.
,
Fan
,
Z. P.
,
You
,
T. H.
, and
Zhang
,
W. Y.
,
2018
, “
Large Group Decision-Making (LGDM) With the Participators From Multiple Subgroups of Stakeholders: A Method Considering Both the Collective Evaluation and the Fairness of the Alternative
,”
Comput. Ind. Eng.
,
122
, pp.
262
272
.
34.
Tang
,
T.
,
Fang
,
H.
,
Luo
,
H.
,
Song
,
Y.
, and
Zhang
,
J.
,
2021
, “
Type Synthesis, Unified Kinematic Analysis and Prototype Validation of a Family of Exechon Inspired Parallel Mechanisms for 5-Axis Hybrid Kinematic Machine Tools
,”
Rob. Comput. Integr. Manuf.
,
72
, p.
102181
.
35.
ISO 1101
,
2017
, “
Geometrical Product Specifications (GPS)-Geometrical Tolerancing-Tolerances of Form, Orientation, Location and Run-Out
,”
International Organization for Standardization
,
Geneva, Switzerland
.
You do not currently have access to this content.