Abstract

Designers from around the world have proposed numerous engineering design solutions for problems related to the COVID-19 pandemic, many of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing (AM). While some of these solutions are motivated by complex and urgent requirements (e.g., face masks), others are motivated by simpler and less urgent needs (e.g., hands-free door openers). Previous research suggests that problem definition influences the creativity of solutions generated for the problem. In this study, we investigate the relationship between the definition of problems related to the COVID-19 pandemic and the characteristics of AM solutions that were openly shared for these problems. Specifically, we analyze 26 AM solutions spanning three categories: (1) hands-free door openers (low complexity problem), (2) face shields (moderate complexity problem), and (3) face masks (high complexity problem). These designs were compared on (1) DfAM utilization, (2) manufacturability (i.e., build time, cost, and material usage), and (3) creativity. We see that the solutions designed for the high complexity problem, i.e., face masks, were least suitable for AM. Moreover, we see that solutions designed for the moderate complexity problem, i.e., face shields, had the lowest build time, build cost, and material consumption. Finally, we observe that the problem definition did not relate to the creativity of the AM solutions. In light of these findings, designers must sufficiently emphasize the AM suitability and manufacturability of their solutions when designing for urgent and complex problems in rapid response situations.

References

1.
Rowan
,
N. J.
, and
Laffey
,
J. G.
,
2020
, “
Challenges and Solutions for Addressing Critical Shortage of Supply Chain for Personal and Protective Equipment (PPE) Arising From Coronavirus Disease (COVID19) Pandemic—Case Study From the Republic of Ireland
,”
Sci. Total Environ.
,
725
, p.
138532
.
2.
Ranney
,
M. L.
,
Griffeth
,
V.
, and
Jha
,
A. K.
,
2020
, “
Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment During the Covid-19 Pandemic
,”
N. Engl. J. Med.
,
382
(
18
), p.
e41
.
3.
Chaib
,
F.
,
2020
, “Shortage of Personal Protective Equipment Endangering Health Workers Worldwide,” World Health Organization, Mar., pp.
1
3
, https://www.who.int/news/item/03-03-2020-shortage-of-personal-protective-equipment-endangering- health-workers-worldwide
4.
Larrañeta
,
E.
,
Dominguez-Robles
,
J.
, and
Lamprou
,
D. A.
,
2020
, “
Additive Manufacturing Can Assist in the Fight Against COVID-19 and Other Pandemics and Impact on the Global Supply Chain
,”
3D Print. Addit. Manuf.
,
7
(
3
), pp.
100
103
.
5.
Salmi
,
M.
,
Akmal
,
J. S.
,
Pei
,
E.
,
Wolff
,
J.
,
Jaribion
,
A.
, and
Khajavi
,
S. H.
,
2020
, “
3D Printing in COVID-19: Productivity Estimation of the Most Promising Open Source Solutions in Emergency Situations
,”
Appl. Sci.
,
10
(
11
), p.
4004
.
6.
Sinha
,
M. S.
,
Bourgeois
,
F. T.
, and
Sorger
,
P. K.
,
2020
, “
Personal Protective Equipment for COVID-19: Distributed Fabrication and Additive Manufacturing
,”
Am. J. Public Health
,
110
(
8
), pp.
1162
1164
.
7.
Kursat Celik
,
H.
,
Kose
,
O.
,
Ulmeanu
,
M. E.
,
Rennie
,
A. E. W.
,
Abram
,
T. N.
, and
Akinci
,
I.
,
2020
, “
Design and Additive Manufacturing of Medical Face Shield for Healthcare Workers Battling Coronavirus (COVID-19)
,”
Int. J. Bioprinting
,
6
(
4
), pp.
1
21
.
8.
Amin
,
D.
,
Nguyen
,
N.
,
Roser
,
S. M.
, and
Abramowicz
,
S.
,
2020
, “
3D Printing of Face Shields During COVID-19 Pandemic: A Technical Note
,”
J. Oral Maxillofac. Surg.
,
78
(
8
), pp.
1275
1278
.
9.
Bishop
,
E. G.
, and
Leigh
,
S. J.
,
2020
, “
Using Large-Scale Additive Manufacturing (LSAM) as a Bridge Manufacturing Process in Response to Shortages in PPE During the COVID-19 Outbreak
,”
Int. J. Bioprinting
,
6
(
4
), p.
281
.
10.
Swennen
,
G. R. J.
,
Pottel
,
L.
, and
Haers
,
P. E.
,
2020
, “
Custom-Made 3D-Printed Face Masks in Case of Pandemic Crisis Situations With a Lack of Commercially Available FFP2/3 Masks
,”
Int. J. Oral Maxillofac. Surg.
,
49
(
5
), pp.
673
677
.
11.
Erickson
,
M. M.
,
Richardson
,
E. S.
,
Hernandez
,
N. M.
,
Bobbert
,
D. W.
,
Gall
,
K.
, and
Fearis
,
P.
,
2020
, “
Helmet Modification to PPE With 3D Printing During the COVID-19 Pandemic at Duke University Medical Center: A Novel Technique
,”
J. Arthroplasty
,
35
(
7
), pp.
S23
S27
.
12.
Ayyıldız
,
S.
,
Dursun
,
A. M.
,
Yıldırım
,
V.
,
İnce
,
M. E.
,
Gülçelik
,
M. A.
, and
Erdöl
,
C.
,
2020
, “
3D-Printed Splitter for Use of a Single Ventilator on Multiple Patients During COVID-19
,”
3D Print. Addit. Manuf.
,
7
(
4
), pp.
181
185
.
13.
Pearce
,
J. M.
,
2020
, “
A Review of Open Source Ventilators for COVID-19 and Future Pandemics
,”
F1000Res.
,
9
(
May
), p.
218
.
14.
Clifton
,
W.
,
Damon
,
A.
, and
Martin
,
A. K.
,
2020
, “
Considerations and Cautions for Three-Dimensional-Printed Personal Protective Equipment in the COVID-19 Crisis
,”
3D Print. Addit. Manuf.
,
7
(
3
), pp.
97
99
.
15.
Choong
,
Y. Y. C.
,
Tan
,
H. W.
,
Patel
,
D. C.
,
Choong
,
W. T. N.
,
Chen
,
C.-H.
,
Low
,
H. Y.
,
Tan
,
M. J.
,
Patel
,
C. D.
, and
Chua
,
C. K.
,
2020
, “
The Global Rise of 3D Printing During the COVID-19 Pandemic
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
637
639
.
16.
Flanagan
,
S. T.
, and
Ballard
,
D. H.
,
2020
, “
3D Printed Face Shields: A Community Response to the COVID-19 Global Pandemic
,”
Acad. Radiol.
,
27
(
6
), pp.
905
906
.
17.
Vordos
,
N.
,
Gkika
,
D. A.
,
Maliaris
,
G.
,
Tilkeridis
,
K. E.
,
Antoniou
,
A.
,
Bandekas
,
D. V.
, and
Ch. Mitropoulos
,
A.
,
2020
, “
How 3D Printing and Social Media Tackles the PPE Shortage During Covid—19 Pandemic
,”
Saf. Sci.
,
130
, p.
104870
.
18.
O’Dowd
,
K.
,
Nair
,
K. M.
,
Forouzandeh
,
P.
,
Mathew
,
S.
,
Grant
,
J.
,
Moran
,
R.
,
Bartlett
,
J.
,
Bird
,
J.
, and
Pillai
,
S. C.
,
2020
, “
Face Masks and Respirators in the Fight Against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives
,”
Materials (Basel)
,
13
(
15
), p.
3363
.
19.
Bezek
,
L. B.
,
Pan
,
J.
,
Harb
,
C.
,
Zawaski
,
C. E.
,
Molla
,
B.
,
Kubalak
,
J. R.
,
Marr
,
L. C.
, and
Williams
,
C. B.
,
2021
, “
Additively Manufactured Respirators: Quantifying Particle Transmission and Identifying System-Level Challenges for Improving Filtration Efficiency
,”
J. Manuf. Syst.
, pp.
1
12
.
20.
WHO
,
2020
, “Advice on the Use of Masks in the Context of COVID-19,” Interim Guidance, 6 April 2020, https://apps.who.int/iris/handle/10665/331693, Accessed November 15, 2021.
21.
Lewnard
,
J. A.
, and
Lo
,
N. C.
,
2020
, “
Scientific and Ethical Basis for Social-Distancing Interventions Against COVID-19
,”
Lancet Infect. Dis.
,
20
(
6
), pp.
631
633
.
22.
Tino
,
R.
,
Moore
,
R.
,
Antoline
,
S.
,
Ravi
,
P.
,
Wake
,
N.
,
Ionita
,
C. N.
, and
Morris
,
J. M.
, et al
,
2020
, “
COVID-19 and the Role of 3D Printing in Medicine
,”
3D Print. Med.
,
6
(
1
), pp.
1
8
.
23.
François
,
P.-M.
,
Bonnet
,
X.
,
Kosior
,
J.
,
Adam
,
J.
, and
Khonsari
,
R. H.
,
2020
, “
3D-Printed Contact-Free Devices Designed and Dispatched Against the COVID-19 Pandemic: The 3D COVID Initiative
,”
J. Stomatol. Oral Maxillofac. Surg.
,
122
(
4
), pp.
381
385
.
24.
Joshi
,
S.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2019
, “
Mapping Problem and Requirements to Final Solution: A Document Analysis of Capstone Design Projects
,”
Int. J. Mech. Eng. Educ.
,
47
(
4
), pp.
338
370
.
25.
Biskjaer
,
M. M.
,
Christensen
,
B. T.
,
Friis-Olivarius
,
M.
,
Abildgaard
,
S. J. J.
,
Lundqvist
,
C.
, and
Halskov
,
K.
,
2020
, “
How Task Constraints Affect Inspiration Search Strategies
,”
Int. J. Technol. Des. Educ.
,
30
(
1
), pp.
101
125
.
26.
Joyce
,
C. K.
,
2009
,
The Blank Page: Effects of Constraint on Creativity
,
University of California
,
Berkley
.
27.
Onarheim
,
B.
,
2012
, “
Creativity From Constraints in Engineering Design: Lessons Learned at Coloplast
,”
J. Eng. Des.
,
23
(
4
), pp.
323
336
.
28.
Fredberg
,
T.
, and
Pregmark
,
J.
,
2016
, “
The Paradox of Innovation and Urgency
,”
IMIT Res. Rep.
,
2
(
Mar.
), pp.
1
8
.
29.
Amabile
,
T. M.
,
Hadley
,
C. N.
, and
Kramer
,
S. J.
,
2002
, “
Creativity Under the Gun
,”
Harv. Bus. Rev.
30.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031121
.
31.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Built to Win? Exploring the Role of Competitive Environments on Students’ Creativity in Design for Additive Manufacturing Tasks
,”
J. Eng. Des.
,
31
(
11–12
), pp.
574
604
.
32.
Prabhu
,
R.
,
Masia
,
J. S.
,
Berthel
,
J. T.
,
Meisel
,
N. A.
, and
Simpson
,
T. W.
,
2021
, “
Design and Manufacturability Data on Additively Manufactured Solutions for COVID-19
,”
Data Brief
,
36
, p.
107012
.
33.
Seepersad
,
C. C.
,
Allison
,
J.
, and
Sharpe
,
C.
,
2017
, “
The Need for Effective Design Guides in Additive Manufacturing
,”
Proceedings of the International Conference on Engineering Design, ICED
, Vol.
5
, No.
DS87-5
, pp.
309
316
. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029790657&partnerID=40&md5=47e1f9dfba3dfef0f59b45bec8b54b35
34.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
35.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
.
36.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
37.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
But Will It Build? Assessing Student Engineering Designers’ Use of Design for Additive Manufacturing Considerations in Design Outcomes
,”
ASME J. Mech. Des.
,
142
(
9
), p.
092001
.
38.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Teaching Design Freedom: Understanding the Effects of Variations in Design for Additive Manufacturing Education on Students’ Creativity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
094501
.
39.
Kershaw
,
T. C.
,
Bhowmick
,
S.
,
Seepersad
,
C. C.
, and
Hölttä-Otto
,
K.
,
2019
, “
A Decision Tree Based Methodology for Evaluating Creativity in Engineering Design
,”
Front. Psychol.
,
10
, pp.
1
19
.
40.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
41.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.
42.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products-Three Novel Chairs
,”
Creat. Res. J.
,
11
(
4
), pp.
333
346
.
43.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through in-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
.
44.
Shah
,
J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
45.
Goucher-Lambert
,
K.
,
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091401
.
46.
Hennessey
,
B. A.
,
Amabile
,
T. M.
, and
Mueller
,
J. S.
,
2011
, “Consensual Assessment,”
Encyclopedia of Creativity
,
Elsevier
, Sept, pp.
253
260
.
47.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
New York
.
48.
Shrout
,
P. E.
, and
Fleiss
,
J. L.
,
1979
, “
Intraclass Correlations: Uses in Assessing Rater Reliability
,”
Psychol. Bull.
,
86
(
2
), pp.
420
428
.
49.
Miller
,
S. R.
,
Hunter
,
S. T.
,
Starkey
,
E.
,
Ramachandran
,
S.
,
Ahmed
,
F.
, and
Fuge
,
M.
,
2021
, “
How Should We Measure Creativity in Engineering Design? A Comparison Between Social Science and Engineering Approaches
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031404
.
50.
Sinha
,
S.
,
Chen
,
H.-E.
,
Meisel
,
N. A.
, and
Miller
,
S. R.
,
2017
, “
Does Designing for Additive Manufacturing Help Us Be More Creative? An Exploration in Engineering Design Education
,”
Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices
,
Cleveland, OH
,
Aug.
, Vol. 3, pp.
1
12
.
51.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity vs. Understanding: How Much Expertise is Needed to Evaluate Creative Work?
,”
Psychol. Aesthet. Creat. Arts
,
7
(
4
), pp.
332
340
.
52.
Vargha
,
A.
, and
Delaney
,
H. D.
,
1998
, “
The Kruskal-Wallis Test and Stochastic Homogeneity
,”
J. Educ. Behav. Stat.
,
23
(
2
), pp.
170
192
.
53.
Fiorineschi
,
L.
,
Frillici
,
F. S.
, and
Rotini
,
F.
,
2020
, “
Challenging COVID-19 With Creativity: Supporting Design Space Exploration for Emergency Ventilators
,”
Appl. Sci.
,
10
(
14
), p.
4955
.
54.
Menold
,
J.
,
Jablokow
,
K.
, and
Simpson
,
T.
,
2017
, “
Prototype for X (PFX): A Holistic Framework for Structuring Prototyping Methods to Support Engineering Design
,”
Des. Stud.
,
50
, pp.
70
112
.
55.
Beaty
,
R. E.
, and
Silvia
,
P. J.
,
2012
, “
Why do Ideas Get More Creative Across Time? An Executive Interpretation of the Serial Order Effect in Divergent Thinking Tasks
,”
Psychol. Aesthet. Creat. Arts
,
6
(
4
), pp.
309
319
.
You do not currently have access to this content.