Abstract

Recently, online user-generated data have been used as an efficient resource for customer analysis. In the product design area, various methods for analyzing customer preference for product features have been suggested. However, most of them focused on feature categories rather than product components which are crucial in practical applications. To address that limitation, this paper proposes a new methodology for extracting sub-features from online data. First, the method detects phrases in the data and filtered them using product manual documents. The filtered phrases are embedded into vectors, and then they are divided into several groups by two clustering methods. The resulting clusters are labeled by analyzing items in each cluster. Finally, cue phrases for sub-features are obtained by selecting clusters with labels representing product features. The proposed methodology was tested on smartphone review data. The result provides feature clusters containing sub-feature phrases with high accuracy. The obtained cue phrases will be used in analyzing customer preferences for sub-features and this can help product designers determine the optimal component configuration in embodiment design.

References

1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design
,
Springer
,
London
.
2.
Sudin
,
M. N.
, and
Ahmed
,
S.
,
2009
, “
Investigation of Change in Specifications During a Product’s Lifecycle
,”
Proceedings of ICED 09, the 17th International Conference on Engineering Design
,
Palo Alto, CA
,
Aug. 24–27
, pp.
371
380
.
3.
Chevalier
,
J. A.
, and
Mayzlin
,
D.
,
2006
, “
The Effect of Word of Mouth on Sales: Online Book Reviews
,”
J. Mark. Res.
,
43
(
3
), pp.
345
354
.
4.
Sun
,
M.
,
2012
, “
How Does the Variance of Product Ratings Matter?
,”
Manage. Sci.
,
58
(
4
), pp.
696
707
.
5.
Chong
,
A. Y. L.
,
Ch’ng
,
E.
,
Liu
,
M. J.
, and
Li
,
B.
,
2017
, “
Predicting Consumer Product Demands Via Big Data: The Roles of Online Promotional Marketing and Online Reviews
,”
Int. J. Prod. Res.
,
55
(
17
), pp.
5142
5156
.
6.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining Opinion Features in Customer Reviews
,”
19th National Conference on Artificial Intelligence
,
San Jose, CA
,
July 25–29
, pp.
755
760
.
7.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2008
,
An Introduction to Information Retrieval
,
Cambridge University Press
,
Cambridge
.
8.
Abulaish
,
M.
,
Jahiruddin
,
D. M. N.
, and
Ahmad
,
T.
,
2009
,
Feature and Opinion Mining for Customer Review Summarization
,
Springer
,
Berlin/Heidelberg
.
9.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
10.
Mei
,
Q.
,
Ling
,
X.
,
Wondra
,
M.
,
Su
,
H.
, and
Zhai
,
C.
,
2007
, “
Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs
,”
Proceedings of the 16th International Conference on World Wide Web, WWW’07
,
Banff Alberta, Canada
,
May 8–12
, pp.
171
180
.
11.
Ma
,
B.
,
Zhang
,
D.
,
Yan
,
Z.
, and
Kim
,
T.
,
2013
, “
An Lda and Synonym Lexicon Based Approach to Product Feature Extraction From Online Consumer Product Reviews
,”
J. Electron. Commerce Res.
,
14
(
4
), pp.
304
314
.
12.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,”
NIPS 2013
,
Harrahs and Harveys, Lake Tahoe, CA
,
Dec. 5–10
, pp.
3111
3119
.
13.
Joung
,
J.
, and
Kim
,
H. M.
,
2020
, “
Automated Keyword Filtering in Lda for Identifying Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
084501
.
14.
Tuarob
,
S.
, and
Tucker
,
C.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
15.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
.
16.
Sapuan
,
S. M.
,
2017
,
Composite Materials
,
Butterworth-Heinemann
,
Boston, MA
.
17.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Efficient Estimation of Word Representations in Vector Space
,” preprint arXiv:1301.3781.
18.
Rong
,
X.
,
2014
, “
word2vec Parameter Learning Explained
,” preprint arXiv:1411.2738.
19.
Jain
,
A. K.
,
2010
, “
Data Clustering: 50 Years Beyond K-Means
,”
Pattern Rec. Lett.
,
31
(
8
), pp.
651
666
.
20.
Xu
,
D.
, and
Tian
,
Y.
,
2015
, “
A Comprehensive Survey of Clustering Algorithms
,”
Ann. Data Sci.
,
2
(
2
), pp.
165
193
.
21.
Har-Peled
,
S.
,
2011
,
Geometric Approximation Algorithms
, Vol.
173
,
American Mathematical Soc
,
Rhode Island
.
22.
Lloyd
,
S. P.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inform. Theory
,
28
(
2
), pp.
129
137
.
23.
Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
.
24.
Cortesy
,
A.
,
Chaki
,
N.
,
Saeed
,
K.
, and
Wierzchon
,
S.
, “
Computer Information Systems and Industrial Management
,”
12th IFIP TC8 International Conference, CISIM 2013
,
Krakow, Poland
,
Sept. 25–27
.
25.
Campello
,
R.
, and
Moulavi
,
D. J. S.
,
2013
,
Density-Based Clustering Based on Hierarchical Density Estimates
,
Springer
,
Berlin/Heidelberg
.
26.
Zhang
,
D.
,
Xu
,
H.
,
Su
,
Z.
, and
Xu
,
Y.
,
2015
, “
Chinese Comments Sentiment Classification Based on word2vec and svmperf
,”
Expert Syst. Appl.
,
42
(
4
), pp.
1857
1863
.
27.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-Means: Extending K-Means With Efficient Estimation of the Number of Clusters
,”
ICML’00: Proceedings of the Seventeenth International Conference on Machine Learning
,
San Francisco, CA
,
June 29–July 2
, pp.
723
734
.
28.
Zhang
,
L.
,
Li
,
J.
, and
Wang
,
C.
,
2017
, “
Automatic Synonym Extraction Using word2vec and Spectral Clustering
,”
Proceedings of the 36th Chinese Control Conference
,
Dalian, China
,
July 26–28
.
29.
O’Dea
,
S.
,
2021
, “
Smartphones in the U.S.—Statistics & Facts
,” https://www.statista.com/topics/2711/us-smartphone-market/
30.
Wold
,
S.
,
Esbensen
,
K.
, and
Geladi
,
P.
,
1987
, “
Principal Component Analysis
,”
Chemom. Intell. Lab. Syst.
,
374
(
1–3
), pp.
37
52
.
31.
Halkidi
,
M.
,
Batistakis
,
Y.
, and
Vazirgiannis
,
M.
,
2001
, “
On Clustering Validation Techniques
,”
J. Intell. Inform. Syst.
,
17
(
2
), pp.
107
145
.
32.
Park
,
S.
, and
Kim
,
H. M.
,
2020
, “
Improving the Accuracy and Diversity of Feature Extraction From Online Reviews Using Keyword Embedding and Two Clustering Method
,”
Proceeding of ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
.
33.
Lipton
,
Z.
,
Elkan
,
C.
, and
Naryanaswamy
,
B.
,
2014
,
Optimal Thresholding of Classifiers to Maximize F1 Measure
,
Springer
,
Berlin/Heidelberg
.
34.
Wu
,
Y.
,
Zhao
,
S.
, and
Li
,
W.
,
2020
, “
Phrase2vec: Phrase Embedding Based on Parsing
,”
Inform. Sci.
,
517
, pp.
100
127
.
35.
Chaklader
,
R.
, and
Parkinson
,
M. B.
,
2017
, “
Data-Driven Sizing Specification Utilizing Consumer Text Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111406
.
You do not currently have access to this content.