Abstract

This article presents a soft cylindrical multistable origami structure based on “bendy straws,” consisting of multiple conical frusta mimicking the structure of a flexible drinking straw. These frusta are connected in such a way that the whole structure is axially multistable, having a stable compressed state in which its smallest frustum is collapsed. The bendy straw structure can also be modified so that the smallest frustum collapses only partially, keeping the structure in a bent state. We studied the geometry of a similar structure consisting of polygonal frusta instead of conical ones and used this geometry to design a nonrigidly foldable origami pattern folding into a similar origami bendy straw structure. Most of the origami structures presented so far have been modeled from rigidly foldable origami patterns: These origami structures do not rely on local deformations of the sheet and cannot use it to their advantage, whereas the nonrigid origami structure presented here features multistability. We have established that this origami structure is not only axially multistable, but that it can also be kept in a bent state, thanks to the use of pop-through defects (PTDs). The origami bendy straws studied here were made from paper (with a density of 90 g/m2) bilaminated with a 42.5 μm thick plastic film. A digital dynamometer was used to study the forces required to compress and expand a single origami bendy straw, create and reverse a PTD, and bend an origami bendy straw using PTDs.

References

1.
Rus
,
D.
, and
Sung
,
C.
,
2018
, “
Spotlight on Origami Robots
,”
Sci. Rob.
,
3
(
15
), pp.
2
4
.
2.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Rob.
,
3
(
22
), p.
eaah5228
.
3.
Lee
,
D.-Y.
,
Kim
,
S.-R.
,
Kim
,
J.-S.
,
Park
,
J.-J.
, and
Cho
,
K.-J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Rob.
,
4
(
2
), pp.
163
180
.
4.
Lee
,
D.-Y.
,
Kim
,
J.-K.
,
Sohn
,
C.-Y.
,
Heo
,
J.-M.
, and
Cho
,
K.-J.
,
2021
, “
High–Load Capacity Origami Transformable Wheel
,”
Sci. Rob.
,
6
(
53
), p.
abe0201
.
5.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. I& Design
,
183
, p.
108128
.
6.
Sareh
,
P.
, and
Chen
,
Y.
,
2020
, “
Intrinsic Non-Flat-Foldability of Two-Tile Ddc Surfaces Composed of Glide-Reflected Irregular Quadrilaterals
,”
Int. J. Mech. Sci.
,
185
, p.
105881
.
7.
Demaine
,
E. D.
, and
O’Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
, Vol.
9780521857
,
Cambridge University Press
,
New York
.
8.
Cianchetti
,
M.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Falco
,
I. D.
,
Laschi
,
C.
,
Member
,
S.
, and
Menciassi
,
A.
,
2013
, “
STIFF-FLOP Surgical Manipulator: Mechanical Design and Experimental Characterization of the Single Module
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3576
3581
.
9.
Li
,
S.
,
Stampfli
,
J. J.
,
Xu
,
H. J.
,
Malkin
,
E.
,
Diaz
,
E. V.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2019
, “
A Vacuum-Driven Origami "Magic-ball" Soft Gripper
,”
2019 International Conference on Robotics and Automation
,
Montreal, Canada
,
May 20–24
.
10.
Filipov
,
E. T.
,
Tachi
,
T.
,
Paulino
,
G. H.
, and
Weitz
,
D. A.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. USA
,
112
(
40
), pp.
12321
12326
.
11.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2185
), p.
0607
.
12.
Zhang
,
Q.
,
2018
, “
Bistable Behaviour of a Deployable Cylinder With Kresling Pattern
,”
7th International Meeting on Origami in Science, Mathematics and Education (7OSME)
,
Oxford, UK
,
Sept. 5–7
.
13.
Pagano
,
A.
,
Leung
,
B.
,
Chien
,
B.
,
Yan
,
T.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2016
, “
Multi-Stable Origami Structure for Crawling Locomotion
,”
ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Stowe, VT
,
Sept. 28–30
, p.
V002T06A005
.
14.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
15.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
63003
.
16.
Bende
,
N. P.
,
Yu
,
T.
,
Corbin
,
N. A.
,
Dias
,
M. A.
,
Santangelo
,
C. D.
,
Hanna
,
J. A.
, and
Hayward
,
R. C.
,
2018
, “
Overcurvature Induced Multistability of Linked Conical Frusta: How a ’bendy Straw’ Holds Its Shape
,”
Soft. Matter.
,
14
(
42
), pp.
8636
8642
.
17.
Chillara
,
V. S. C.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2015
, “
Self-Folding Laminated Composites for Smart Origami Structures
,”
ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015, Vol. 2
,
Colorado Springs, CO
,
Sept. 21–23
.
18.
Carlson
,
J.
,
Friedman
,
J.
,
Kim
,
C.
, and
Sung
,
C.
,
2020
, “
REBOund: Untethered Origami Jumping Robot with Controllable Jump Height
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
10089
10095
.
19.
Ghassaei
,
A.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using GPU Computation
,”
7th International Meeting on Origami in Science, Mathematics and Education (7OSME)
,
Oxford, UK
,
Sept. 5–7
.
20.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
21.
Tracker
,
P.
, https://physlets.org/tracker/, Accessed August 8, 2021.
22.
Kim
,
S.
,
Lee
,
D.-Y.
,
Jung
,
G.-P.
, and
Cho
,
K.-J.
,
2018
, “
An Origami-Inspired, Self-Locking Robotic Arm That Can Be Folded Flat
,”
Sci. Rob.
,
3
(
16
), p.
eaar2915
.
23.
Koh
,
J.-s.
,
Kim
,
S.-r.
, and
Cho
,
K.-j.
,
2014
, “
Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, p.
V05BT08A04
.
You do not currently have access to this content.