Abstract

Decomposition is a dominant design strategy because it enables complex problems to be broken up into loosely coupled modules that are easier to manage and can be designed in parallel. However, contrary to widely held expectations, we show that complexity can increase substantially when natural system modules are fully decoupled from one another to support parallel design. Drawing on detailed empirical evidence from a NASA space robotics field experiment, we explain how new information is introduced into the design space through three complexity addition mechanisms of the decomposition process: interface creation, functional allocation, and second-order effects. These findings have important implications for how modules are selected early in the design process and how future decomposition approaches should be developed. Although it is well known that complex systems are rarely fully decomposable and that the decoupling process necessitates additional design work, the literature is predominantly focused on reordering, clustering, and/or grouping-based approaches to define module boundaries within a fixed system representation. Consequently, these approaches are unable to account for the (often significant) new information that is added to the design space through the decomposition process. We contend that the observed mechanisms of complexity growth need to be better accounted for during the module selection process in order to avoid unexpected downstream costs. With this work, we lay a foundation for valuing these complexity-induced impacts to performance, schedule, and cost, earlier in the decomposition process.

References

1.
Moses
,
J.
,
2004
, “
Foundational Issues in Engineering Systems: A Framing Paper
,” Engineering Systems Monograph, p.
2
.
2.
Maddox
,
I.
,
Collopy
,
P.
, and
Farrington
,
P. A.
,
2013
, “
Value-Based Assessment of DoD Acquisitions Programs
,”
Procedia Comput. Sci.
,
16
(
1
), pp.
1161
1169
.
3.
Locatelli
,
G.
,
2018
, “
Why are Megaprojects, Including Nuclear Power Plants, Delivered Overbudget and Late? Reasons and Remedies
,”
arXiv preprint
4.
U. S. Government Accountability Office
,
2017
, “
Columbia Class Submarine: Immature Technologies Present Risks to Achieving Cost Schedule and Performance Goals
,” Report No. GAO-18-158, https://www.gao.gov/products/GAO-18-158, Accessed February 25, 2021.
5.
U. S. Government Accountability Office
,
2018
, “
F-35 Joint Strike Fighter: Development Is Nearly Complete, But Deficiencies Found in Testing Need to Be Resolved [Reissued with Revisions June 13, 2018]
,” Report No. GAO-18-321, https://www.gao.gov/products/GAO-18-321, Accessed February 25, 2021..
6.
U. S. Government Accountability Office
,
2018
, “
Navy Shipbuilding: Past Performance Provides Valuable Lessons for Future Investments
,” Report No. GAO-18-238SP, https://www.gao.gov/products/GAO-18-238SP, Accessed February 25, 2021.
7.
U. S. Government Accountability Office
,
2019
, “
NASA: Assessments of Major Projects
,” Report No.
GAO-19-262SP
, https://www.gao.gov/products/GAO-19-262SP, Accessed February 25, 2021.
8.
U. S. Government Accountability Office
,
2020
, “
James Webb Space Telescope: Technical Challenges Have Caused Schedule Strain and May Increase Costs
,” Report No. GAO-20-224, https://www.gao.gov/products/GAO-20-224, Accessed February 25, 2021.
9.
Lew
,
K. S.
,
Dillon
,
T. S.
, and
Forward
,
K. E.
,
1988
, “
Software Complexity and Its Impact on Software Reliability
,”
IEEE Trans. Software Eng.
,
14
(
11
), pp.
1645
1655
.
10.
Rijpma
,
J. A.
,
1997
, “
Complexity, Tight–Coupling and Reliability: Connecting Normal Accidents Theory and High Reliability Theory
,”
J. Contingencies Crisis Manag.
,
5
(
1
), pp.
15
23
.
11.
Eckert
,
C. M.
,
Keller
,
R.
,
Earl
,
C.
, and
Clarkson
,
P. J.
,
2006
, “
Supporting Change Processes in Design: Complexity, Prediction and Reliability
,”
Reliab. Eng. Syst. Saf.
,
91
(
12
), pp.
1521
1534
.
12.
Simon
,
H. A.
,
1962
, “
The Architecture of Complexity
,”
Proc. Am. Philos. Soc.
,
106
(
6
), pp.
468
482
.
13.
Parnas
,
D. L.
,
1972
, “
On the Criteria to be Used in Decomposing Systems Into Modules
,”
Pioneers and Their Contributions to Software Engineering
,
15
(
12
), pp.
1053
1058
.
14.
Orton
,
J. D.
, and
Weick
,
K. E.
,
1990
, “
Loosely Coupled Systems: A Reconceptualization
,”
Acad. Manage. Rev.
,
15
(
2
), pp.
203
223
.
15.
Williamson
,
O. E.
,
1991
, “
Comparative Economic Organization: The Analysis of Discrete Structural Alternatives
,”
Adm. Sci. Q.
,
36
(
2
), pp.
269
296
.
16.
Eppinger
,
S. D.
,
1997
, “
A Planning Method for Integration of Large-Scale Engineering Systems
,”
International Conference on Engineering Design
,
Tampere, Finland
,
Aug. 19–21
, pp.
199
204
.
17.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
2000
,
Design Rules: The Power of Modularity
,
MIT Press
,
Cambridge, MA
.
18.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
19.
Thompson
,
J. D.
,
2003
,
Organizations in Action: Social Science Bases of Administrative Theory
,
Transaction Publishers
,
New Brunswick, NJ
.
20.
Campagnolo
,
D.
, and
Camuffo
,
A.
,
2010
, “
The Concept of Modularity in Management Studies: A Literature Review
,”
Int. J. Manag. Rev.
,
12
(
3
), pp.
259
283
.
21.
Topcu
,
T. G.
,
Triantis
,
K.
,
Malak
,
R.
, and
Collopy
,
P.
,
2020
, “
An Interdisciplinary Strategy to Advance Systems Engineering Theory: The Case of Abstraction and Elaboration
,”
Syst. Eng.
,
23
(
6
), pp.
673
683
.
22.
Steward
,
D. V.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
EM-28
(
3
), pp.
71
74
.
23.
Morelli
,
M. D.
,
Eppinger
,
S. D.
, and
Gulati
,
R. K.
,
1995
, “
Predicting Technical Communication in Product Development Organizations
,”
IEEE Trans. Eng. Manage.
,
42
(
3
), pp.
215
222
.
24.
Ulrich
,
K. T.
,
2003
,
Product Design and Development
,
Tata McGraw-Hill Education
,
New York
.
25.
Alexander
,
C.
,
1964
,
Notes on the Synthesis of Form
,
Harvard University Press
,
Cambridge, MA
.
26.
Galbraith
,
J. R.
,
1974
, “
Organization Design: An Information Processing View
,”
Interfaces
,
4
(
3
), pp.
28
36
.
27.
Tushman
,
M. L.
,
1977
, “
Special Boundary Roles in the Innovation Process
,”
Adm. Sci. Q.
,
22
(
4
), pp.
587
605
.
28.
Tushman
,
M. L.
, and
Nadler
,
D. A.
,
1978
, “
Information Processing as an Integrating Concept in Organizational Design
,”
Acad. Manage. Rev.
,
3
(
3
), pp.
613
624
.
29.
Reif
,
F.
,
1981
, “
Teaching Problem Solving—A Scientific Approach
,”
Phys. Teacher
,
19
(
5
), pp.
310
316
.
30.
Sanchez
,
R.
, and
Mahoney
,
J. T.
,
1996
, “
Modularity, Flexibility, and Knowledge Management in Product and Organization Design
,”
Strateg. Manag. J.
,
17
(
S2
), pp.
63
76
.
31.
Fixson
,
S. K.
, and
Park
,
J.-K.
,
2008
, “
The Power of Integrality: Linkages Between Product Architecture, Innovation, and Industry Structure
,”
Res. Policy
,
37
(
8
), pp.
1296
1316
.
32.
Pine
,
B. J.
,
1993
, “
Making Mass Customization Happen: Strategies for the New Competitive Realities
,”
Plan. Rev.
,
21
(
5
), pp.
23
24
.
33.
Boas
,
R.
, and
Crawley
,
E.
,
2011
, “
The Elusive Benefits of Common Parts
,”
Harvard Business Review
, https://hbr.org/2011/10/the-elusive-benefits-of-common-parts, Accessed February 5, 2021.
34.
Fogliatto
,
F. S.
,
Da Silveira
,
G. J.
, and
Borenstein
,
D.
,
2012
, “
The Mass Customization Decade: An Updated Review of the Literature
,”
Int. J. Prod. Econ.
,
138
(
1
), pp.
14
25
.
35.
Boas
,
R.
,
Cameron
,
B. G.
, and
Crawley
,
E. F.
,
2013
, “
Divergence and Lifecycle Offsets in Product Families With Commonality
,”
Syst. Eng.
,
16
(
2
), pp.
175
192
.
36.
Colombo
,
E. F.
,
Shougarian
,
N.
,
Sinha
,
K.
,
Cascini
,
G.
, and
de Weck
,
O. L.
,
2019
, “
Value Analysis for Customizable Modular Product Platforms: Theory and Case Study
,”
Res. Eng. Des.
31
(
1
), pp.
123
140
.
37.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
38.
Ethiraj
,
S. K.
, and
Levinthal
,
D.
,
2004
, “
Modularity and Innovation in Complex Systems
,”
Manage. Sci.
,
50
(
2
), pp.
159
173
.
39.
Hölttä-Otto
,
K.
, and
de Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurr. Eng.
,
15
(
2
), pp.
113
126
.
40.
Brusoni
,
S.
, and
Prencipe
,
A.
,
2001
, “
Unpacking the Black Box of Modularity: Technologies, Products and Organizations
,”
Ind. Corp. Change
,
10
(
1
), pp.
179
205
.
41.
Brusoni
,
S.
, and
Prencipe
,
A.
,
2006
, “
Making Design Rules: A Multidomain Perspective
,”
Organ. Sci.
,
17
(
2
), pp.
179
189
.
42.
Holmqvist
,
T. K. P.
, and
Persson
,
M. L.
,
2003
, “
Analysis and Improvement of Product Modularization Methods: Their Ability to Deal With Complex Products
,”
Syst. Eng.
,
6
(
3
), pp.
195
209
.
43.
Maier
,
M. W.
, and
Rechtin
,
E.
,
2009
,
The Art of Systems Architecting
,
CRC Press
,
Boca Raton, FL
.
44.
Suh
,
N. P.
,
1998
, “
Axiomatic Design Theory for Systems
,”
Res. Eng. Des.
,
10
(
4
), pp.
189
209
.
45.
Ericsson
,
A.
, and
Erixon
,
G.
,
1999
,
Controlling Design Variants: Modular Product Platforms
,
Society of Manufacturing Engineers
,
Dearborn, MA
.
46.
Jiao
,
J.
, and
Zhang
,
Y.
,
2005
, “
Product Portfolio Identification Based on Association Rule Mining
,”
Comput.-Aided Des.
,
37
(
2
), pp.
149
172
.
47.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
48.
Krause
,
D.
,
Beckmann
,
G.
,
Eilmus
,
S.
,
Gebhardt
,
N.
,
Jonas
,
H.
, and
Rettberg
,
R.
,
2014
, “Integrated Development of Modular Product Families: a Methods Toolkit,”
Advances in Product Family and Product Platform Design
,.
Springer
,
New York, NY
, pp.
245
269
.
49.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
50.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Ki Moon
,
S.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
.
51.
Bruun
,
H. P. L.
,
Mortensen
,
N. H.
, and
Harlou
,
U.
,
2014
, “
Interface Diagram: Design Tool for Supporting the Development of Modularity in Complex Product Systems
,”
Concurr. Eng.
,
22
(
1
), pp.
62
76
.
52.
Suh
,
E. S.
,
Chiriac
,
N.
, and
Hölttä-Otto
,
K.
,
2015
, “
Seeing Complex System Through Different Lenses: Impact of Decomposition Perspective on System Architecture Analysis
,”
Syst. Eng.
,
18
(
3
), pp.
229
240
.
53.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manage.
,
23
(
3
), pp.
345
369
.
54.
Fricke
,
E.
, and
Schulz
,
A. P.
,
2005
, “
Design for Changeability (DfC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle
,”
Syst. Eng.
,
8
(
4
).
55.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
56.
Helmer
,
R.
,
Yassine
,
A.
, and
Meier
,
C.
,
2010
, “
Systematic Module and Interface Definition Using Component Design Structure Matrix
,”
J. Eng. Des.
,
21
(
6
), pp.
647
675
.
57.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2014
, “
A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,”
Res. Eng. Des.
,
25
(
1
), pp.
31
51
.
58.
Szajnfarber
,
Z.
,
Zhang
,
L.
,
Mukherjee
,
S.
,
Crusan
,
J.
,
Hennig
,
A.
, and
Vrolijk
,
A.
,
2020
, “
Who Is in the Crowd? Characterizing the Capabilities of Prize Competition Competitors
,”
IEEE Trans. Eng. Manage.
, pp.
1
15
.
59.
Sinha
,
K.
, and
de Weck
,
O. L.
,
2016
, “
Empirical Validation of Structural Complexity Metric and Complexity Management for Engineering Systems
,”
Syst. Eng.
,
19
(
3
), pp.
193
206
.
60.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.
61.
Miller
,
G. A.
,
1956
, “
The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information
,”
Psychol. Rev.
,
63
(
2
), pp.
81
97
.
62.
Nadler
,
D.
,
Tushman
,
M.
,
Tushman
,
M. L.
, and
Nadler
,
M. B.
,
1997
,
Competing by Design: The Power of Organizational Architecture
,
Oxford University Press
,
Cambridge, MA
.
63.
Doyle
,
J. C.
, and
Csete
,
M.
,
2011
, “
Architecture, Constraints, and Behavior
,”
Proc. Natl. Acad. Sci..
,
108
(
Supplement_3
), pp.
15624
15630
.
64.
Jones
,
B. F.
,
2009
, “
The Burden of Knowledge and the ‘Death of the Renaissance Man’: Is Innovation Getting Harder?
,”
Rev. Econ. Stud.
,
76
(
1
), pp.
283
317
.
65.
Brusoni
,
S.
,
2005
, “
The Limits to Specialization: Problem Solving and Coordination in ‘Modular Networks
,”
Organ. Stud.
,
26
(
12
), pp.
1885
1907
.
66.
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2008
, “
Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
.
67.
MacCormack
,
A.
,
Baldwin
,
C.
, and
Rusnak
,
J.
,
2012
, “
Exploring the Duality Between Product and Organizational Architectures: A Test of the ‘Mirroring’ Hypothesis
,”
Res. Policy
,
41
(
8
), pp.
1309
1324
.
68.
Colfer
,
L. J.
, and
Baldwin
,
C. Y.
,
2016
, “
The Mirroring Hypothesis: Theory, Evidence, and Exceptions
,”
Ind. Corp. Change
,
25
(
5
), pp.
709
738
.
69.
Von Hippel
,
E.
,
1990
, “
Task Partitioning: An Innovation Process Variable
,”
Res. policy
,
19
(
5
), pp.
407
418
.
70.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Adm. Sci. Q.
,
35
(
1
), pp.
9
30
.
71.
Chesbrough
,
H. W.
, and
Teece
,
D. J.
,
1998
, “When is Virtual Virtuous? Organizing for Innovation,”
The Strategic Management of Intellectual Capital
,
27
,
Butterworth-Heinemann
,
Boston, MA
.
72.
Cataldo
,
M.
,
Herbsleb
,
J. D.
, and
Carley
,
K. M.
,
2008
, “
Socio-technical Congruence: A Framework for Assessing the Impact of Technical and Work Dependencies on Software Development Productivity
,”
Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Kaiserslautern, Germany
,
Oct. 9–10
,
New York, NY
, pp.
2
11
.
73.
Eck
,
D. V.
,
Mcadams
,
D. A.
, and
Vermaas
,
P. E.
,
2007
, “
Functional Decomposition in Engineering: A Survey
,”
Proceeding of the ASME IDETC/CIE
,
Las Vegas, NV
,
Sept. 4–7
.
74.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
Springer Verlag, London
.
75.
Kusiak
,
A.
, and
Wang
,
J.
,
1993
, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
687
695
.
76.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
.
77.
Tribes
,
C.
,
Dubé
,
J.-F.
, and
Trépanier
,
J.-Y.
,
2005
, “
Decomposition of Multidisciplinary Optimization Problems: Formulations and Application to a Simplified Wing Design
,”
Eng. Optim.
,
37
(
8
), pp.
775
796
.
78.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
79.
Suh
,
E. S.
,
De Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
80.
Suh
,
E. S.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
de Weck
,
O.
,
2010
, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
Syst. Eng.
,
13
(
2
), pp.
186
203
.
81.
O’Neill
,
M. G.
, and
Weigel
,
A. L.
,
2011
, “
Assessing Fractionated Spacecraft Value Propositions for Earth Imaging Space Missions
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
974
986
.
82.
Browning
,
T. R.
,
2016
, “
Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,”
IEEE Trans. Eng. Manage.
,
63
(
1
), pp.
27
52
.
83.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2012
, “
A High-Definition Design Structure Matrix (HDDSM) for the Quantitative Assessment of Product Architecture
,”
J. Eng. Des.
,
23
(
10–11
), pp.
767
789
.
84.
Pimmler
,
T. U.
, and
Eppinger
,
S. D.
,
1995
, “
The International Center for Research on the Management of Technology
,”
ASME Design Theory and Methodology Conference
,
Minneapolis, MN
,
Sept. 11–14
, p.
11
.
85.
Sharman
,
D. M.
, and
Yassine
,
A. A.
,
2004
, “
Characterizing Complex Product Architectures
,”
Syst. Eng.
,
7
(
1
), pp.
35
60
.
86.
Eppinger
,
S. D.
,
Whitney
,
D. E.
,
Smith
,
R. P.
, and
Gebala
,
D. A.
,
1994
, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
(
1
), pp.
1
13
.
87.
Yu
,
T.-L.
,
Goldberg
,
D. E.
,
Sastry
,
K.
,
Lima
,
C. F.
, and
Pelikan
,
M.
,
2009
, “
Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination
,”
Evol. Comput.
,
17
(
4
), pp.
595
626
.
88.
Sarkar
,
S.
,
Dong
,
A.
,
Henderson
,
J. A.
, and
Robinson
,
P. A.
,
2014
, “
Spectral Characterization of Hierarchical Modularity in Product Architectures
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011006
.
89.
Suh
,
N.
,
2005
, “
Complexity in Engineering
,”
CIRP Ann.
,
54
(
2
), pp.
46
63
.
90.
Lindemann
,
U.
,
2009
,
Structural Complexity Management: An Approach for the Field of Product Design
,
Springer
,
Berlin
.
91.
Crawley
,
E.
,
De Weck
,
O.
,
Magee
,
C.
,
Moses
,
J.
,
Seering
,
W.
,
Schindall
,
J.
,
Wallace
,
D.
, and
Whitney
,
D.
,
2004
,
The Influence of Architecture in Engineering Systems
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
92.
Sheard
,
S. A.
, and
Mostashari
,
A.
,
2010
, “
7.3.1 A Complexity Typology for Systems Engineering
,”
INCOSE Int. Symp.
,
20
(
1
), pp.
933
945
.
93.
Moses
,
J.
,
2004
,
Foundational Issues in Engineering Systems: A Framing Paper
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
94.
Pahl
,
G.
,
Wallace
,
K.
, and
Blessing
,
L.
,
2007
,
Engineering Design: A Systematic Approach
, 3rd ed.,
Springer
,
London
.
95.
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1976
,
Decision Analysis With Multiple Conflicting Objectives
,
Wiley& Sons
,
New York
.
96.
Hazelrigg
,
G.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
97.
Collopy
,
P. D.
, and
Hollingsworth
,
P. M.
,
2011
, “
Value-Driven Design
,”
J. Aircr.
,
48
(
3
), pp.
749
759
.
98.
Von Bertalanffy
,
L.
,
1968
, “
General System Theory
,” New York, 41973, 1968, p.
40
.
99.
Salado
,
A.
, and
Nilchiani
,
R.
,
2014
, “
The Concept of Problem Complexity
,”
Procedia Comput. Sci.
,
28
(
1
), pp.
539
546
.
100.
Halstead
,
M. H.
,
1977
,
Elements of Software Science
,
Elsevier
,
New York
.
101.
McCabe
,
T. J.
,
1976
, “
A Complexity Measure
,”
IEEE Trans. Software Eng.
,
SE-2
(
4
), pp.
308
320
.
102.
Ameri
,
F.
,
Summers
,
J. D.
,
Mocko
,
G. M.
, and
Porter
,
M.
,
2008
, “
Engineering Design Complexity: An Investigation of Methods and Measures
,”
Res. Eng. Des.
,
19
(
2
), pp.
161
179
.
103.
Tamaskar
,
S.
,
Neema
,
K.
, and
DeLaurentis
,
D.
,
2014
, “
Framework for Measuring Complexity of Aerospace Systems
,”
Res. Eng. Des.
,
25
(
2
), pp.
125
137
.
104.
Moses
,
J.
,
2004
, “
Foundational Issues in Engineering Systems: A Framing Paper
.”
Engineering Systems Monograph
105.
Broniatowski
,
D. A.
, and
Moses
,
J.
,
2016
, “
Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures
,”
Syst. Eng.
,
19
(
3
), pp.
207
221
.
106.
Braha
,
D.
, and
Maimon
,
O.
,
1998
, “
The Measurement of a Design Structural and Functional Complexity
,”
IEEE Trans. Sys. Man Cyber. – Part A: Syst. Humans
,
28
(
4
), pp.
241
277
.
107.
Hennig
,
A.
,
Topcu
,
T. G.
, and
Szajnfarber
,
Z.
, 2021, “
Complexity Should Not Be In the Eye of the Beholder: How Representative Complexity Measures Respond to the Commonly-Held Beliefs of the Literature
,”
ASME IDETC/CIE
,
Virtual, Online
,
Aug. 2021
.
108.
Min
,
G.
,
Suh
,
E. S.
, and
Hölttä-Otto
,
K.
,
2016
, “
System Architecture, Level of Decomposition, and Structural Complexity: Analysis and Observations
,”
ASME J. Mech. Des.
,
138
(
2
), p. 021102.
109.
Sinha
,
K.
, and
Suh
,
E. S.
,
2018
, “
Pareto-optimization of Complex System Architecture for Structural Complexity and Modularity
,”
Res. Eng. Des.
,
29
(
1
), pp.
123
141
.
110.
Yin
,
R. K.
,
2003
,
Case Study Research: Design and Methods
,
SAGE
,
Thousand Oaks, CA
.
111.
Eisenhardt
,
K. M.
,
1989
, “
Building Theories From Case Study Research
,”
Acad. Manage. Rev.
,
14
(
4
), pp.
532
550
.
112.
Szajnfarber
,
Z.
, and
Gralla
,
E.
,
2017
, “
Qualitative Methods for Engineering Systems: Why We Need Them and How to Use Them
,”
Syst. Eng.
,
20
(
6
), pp.
497
511
.
113.
Miles
,
M. B.
, and
Huberman
,
A. M.
,
1994
,
Qualitative Data Analysis: An Expanded Sourcebook
,
SAGE
.
114.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2015
,
System Architecture: Strategy and Product Development for Complex Systems
,
Prentice Hall Press
,
Essex, UK
.
115.
Kossiakoff
,
A.
, and
Sweet
,
W. N.
,
2003
,
Systems Engineering: Principles and Practices
,
Wiley Online Library
,
Hoboken, NJ
.
116.
English
,
K.
,
Bloebaum
,
C. L.
, and
Miller
,
E.
,
2001
, “
Development of Multiple Cycle Coupling Suspension in the Optimization of Complex Systems
,”
Struct. Multidiscipl. Optim.
,
22
(
4
), pp.
268
283
.
117.
Chen
,
S.-J. G.
, and
Lin
,
L.
,
2003
, “
Decomposition of Interdependent Task Group for Concurrent Engineering
,”
Comput. Ind. Eng.
,
44
(
3
), pp.
435
459
.
118.
Ko
,
Y.-T.
,
2013
, “
Optimizing Product Architecture for Complex Design
,”
Concurr. Eng.
,
21
(
2
), pp.
87
102
.
119.
Dudek
,
G.
,
Jenkin
,
M. R.
,
Milios
,
E.
, and
Wilkes
,
D.
,
1996
, “
A Taxonomy for Multi-agent Robotics
,”
Auton. Robots
,
3
(
4
), pp.
375
397
.
120.
Gilpin
,
K.
, and
Rus
,
D.
,
2010
, “
Modular Robot Systems
,”
IEEE Robot. Autom. Mag.
,
17
(
3
), pp.
38
55
.
121.
Chen
,
L.
, and
Li
,
S.
,
2004
, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
545
557
.
You do not currently have access to this content.