Abstract

Typical engineering design tasks require the effort to modify designs iteratively until they meet certain constraints, i.e., performance or attribute requirements. Past work has proposed ways to solve the inverse design problem, where desired designs are directly generated from specified requirements, thus avoiding the trial and error process. Among those approaches, the conditional deep generative model shows great potential since (1) it works for complex high-dimensional designs and (2) it can generate multiple alternative designs given any range condition. In this work, we propose a conditional deep generative model, range-constrained generative adversarial network, to achieve automatic design synthesis subject to range constraints. The proposed model addresses the sparse conditioning issue in data-driven inverse design problems by introducing a label-aware self-augmentation approach. We also propose a new uniformity loss to ensure the generated designs evenly cover the given requirement range. Through a real-world example of constrained 3D shape generation, we show that the label-aware self-augmentation leads to an average improvement of 14% on the constraint satisfaction for generated 3D shapes, and the uniformity loss leads to a 125% average increase on the uniformity of generated shapes’ attributes. This work laid the foundation for data-driven inverse design problems where we consider range constraints and there are sparse regions in the condition space.

References

1.
Bellman
,
R.
,
1966
, “
Dynamic Programming
,”
Science
,
153
(
3731
), pp.
34
37
.
2.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
2016
.
3.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
4.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
5.
Guo
,
T.
,
Herber
,
D.
, and
Allison
,
J. T.
,
2019
, “
Circuit Synthesis Using Generative Adversarial Networks (GANs)
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
, p.
2350
.
6.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3d Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
2019
.
7.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA J.
,
58
(
11
), pp.
4723
4735
.
8.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3d Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
9.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, pp.
113377
113418
.
10.
Chen
,
W.
, and
Ahmed
,
F.
,
2020
, “
PADGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
11.
Chen
,
W.
, and
Ramamurthy
,
A.
,
2021
, “
Deep Generative Model for Efficient 3d Airfoil Parameterization and Generation
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
, p.
1690
.
12.
Liu
,
Z.
,
Zhu
,
D.
,
Rodrigues
,
S. P.
,
Lee
,
K.-T.
, and
Cai
,
W.
,
2018
, “
Generative Model for the Inverse Design of Metasurfaces
,”
Nano Lett.
,
18
(
10
), pp.
6570
6576
.
13.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model With Semi-supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
.
14.
Yilmaz
,
E.
, and
German
,
B.
,
2020
, “
Conditional Generative Adversarial Network Framework for Airfoil Inverse Design
,”
AIAA AVIATION 2020 FORUM
,
Virtual Event
,
2020
.
15.
Achour
,
G.
,
Sung
,
W. J.
,
Pinon-Fischer
,
O. J.
, and
Mavris
,
D. N.
,
2020
, “
Development of a Conditional Generative Adversarial Network for Airfoil Shape Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
, p.
2261
.
16.
Peurifoy
,
J.
,
Shen
,
Y.
,
Jing
,
L.
,
Yang
,
Y.
,
Cano-Renteria
,
F.
,
DeLacy
,
B. G.
,
Joannopoulos
,
J. D.
,
Tegmark
,
M.
, and
Soljačić
,
M.
,
2018
, “
Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks
,”
Sci. Adv.
,
4
(
6
), p.
eaar4206
.
17.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
, Vol. 51753, American Society of Mechanical Engineers, p. V02AT03A009.
18.
Lee
,
X. Y.
,
Balu
,
A.
,
Stoecklein
,
D.
,
Ganapathysubramanian
,
B.
, and
Sarkar
,
S.
,
2019
, “
A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111401
.
19.
Theodorou
,
E.
,
Buchli
,
J.
, and
Schaal
,
S.
,
2010
, “
Reinforcement Learning of Motor Skills in High Dimensions: A Path Integral Approach
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
, IEEE, pp.
2397
2403
.
20.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
21.
Zheng
,
J.
,
Shen
,
R.
, and
Zou
,
J.
,
2012
, “
Enhancing Diversity for NSGA-II in Evolutionary Multi-objective Optimization
,”
2012 8th International Conference on Natural Computation
,
Chongqing, China
, pp.
654
657
.
22.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
27th International Conference on Neural Information Processing Systems
,
Montreal, Canada
, pp.
2672
2680
.
23.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-encoding Variational Bayes
,”
2nd International Conference on Learning Representations, ICLR 2014Conference Track Proceedings
,
Banff, AB, Canada
,
Apr. 14–16
.
24.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,”
CoRR
.
25.
K.
,
Lee
,
H.
, and
Yan
,
X.
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
.
26.
Wang
,
J.
,
Chen
,
W.
,
Fuge
,
M.
, and
Rai
,
R.
,
2021
, “
IH-GAN: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures
,”
CoRR
.
27.
Dong
,
Y.
,
Li
,
D.
,
Zhang
,
C.
,
Wu
,
C.
,
Wang
,
H.
,
Xin
,
M.
,
Cheng
,
J.
, and
Lin
,
J.
,
2020
, “
Inverse Design of Two-Dimensional Graphene/h-bn Hybrids by a Regressional and Conditional GAN
,”
Carbon
,
169
, pp.
9
16
.
28.
Dan
,
Y.
,
Zhao
,
Y.
,
Li
,
X.
,
Li
,
S.
,
Hu
,
M.
, and
Hu
,
J.
,
2020
, “
Generative Adversarial Networks (GAN) Based Efficient Sampling of Chemical Composition Space for Inverse Design of Inorganic Materials
,”
npj Comput. Mater.
,
6
(
1
).
29.
Sawada
,
Y.
,
Morikawa
,
K.
, and
Fujii
,
M.
,
2019
, “
Study of Deep Generative Models for Inorganic Chemical Compositions
,”
CoRR
.
30.
Wang
,
J.
,
Li
,
R.
,
He
,
C.
,
Chen
,
H.
,
Cheng
,
R.
,
Zhai
,
C.
, and
Zhang
,
M.
,
2021
, “
An Inverse Design Method for Supercritical Airfoil Based on Conditional Generative Models
,”
Chin. J. Aero
.
31.
Ding
,
X.
,
Wang
,
Y.
,
Xu
,
Z.
,
Welch
,
W. J.
, and
Wang
,
Z. J.
,
2021
, “
CcGAN: Continuous Conditional Generative Adversarial Networks for Image Generation
,”
9th International Conference on Learning Representations, ICLR 2021, Virtual Event
,
Austria
,
May 3–7
.
32.
Chang
,
A. X.
,
Funkhouser
,
T. A.
,
Guibas
,
L. J.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
, et al.,
2015
, “
Shapenet: An Information-Rich 3d Model Repository
,” CoRR, abs/1512.03012.
33.
Wu
,
J.
,
Zhang
,
C.
,
Xue
,
T.
,
Freeman
,
B.
, and
Tenenbaum
,
J.
,
2016
, “
Learning a Probabilistic Latent Space of Object Shapes Via 3d Generative-Adversarial Modeling
,”
30th International Conference on Neural Information Processing Systems
,
Barcelona, Spain
, pp.
82
90
.
34.
Wang
,
H.
,
Schor
,
N.
,
Hu
,
R.
,
Huang
,
H.
,
Cohen-Or
,
D.
, and
Huang
,
H.
,
2018
, “
Global-to-Local Generative Model for 3d Shapes
,”
ACM Trans. Graph.
,
37
(
6
), pp.
1
10
.
35.
Achlioptas
,
P.
,
Diamanti
,
O.
,
Mitliagkas
,
I.
, and
Guibas
,
L.
,
2018
, “
Learning Representations and Generative Models for 3d Point Clouds
,”
35th International Conference on Machine Learning
,
Stockholm, Sweden
, pp.
40
49
.
36.
Liu
,
S.
,
Giles
,
L.
, and
Ororbia
,
A.
,
2018
, “
Learning a Hierarchical Latent-Variable Model of 3d Shapes
,”
2018 International Conference on 3D Vision (3DV)
,
Verona, Italy
, pp.
542
551
.
37.
Arsalan Soltani
,
A.
,
Huang
,
H.
,
Wu
,
J.
,
Kulkarni
,
T. D.
, and
Tenenbaum
,
J. B.
,
2017
, “
Synthesizing 3d Shapes Via Modeling Multi-view Depth Maps and Silhouettes With Deep Generative Networks
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
, pp.
1511
1519
.
38.
Ben-Hamu
,
H.
,
Maron
,
H.
,
Kezurer
,
I.
,
Avineri
,
G.
, and
Lipman
,
Y.
,
2018
, “
Multi-chart Generative Surface Modeling
,”
ACM Trans. Graph.
,
37
(
6
), pp.
1
15
.
39.
Mescheder
,
L.
,
Oechsle
,
M.
,
Niemeyer
,
M.
,
Nowozin
,
S.
, and
Geiger
,
A.
,
2019
, “
Occupancy Networks: Learning 3d Reconstruction in Function Space
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
, pp.
4460
4470
.
40.
Chen
,
Z.
, and
Zhang
,
H.
,
2019
, “
Learning Implicit Fields for Generative Shape Modeling
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
, pp.
5939
5948
.
41.
Park
,
J. J.
,
Florence
,
P.
,
Straub
,
J.
,
Newcombe
,
R.
, and
Lovegrove
,
S.
,
2019
, “
Deepsdf: Learning Continuous Signed Distance Functions for Shape Representation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
, pp.
165
174
.
42.
Odena
,
A.
,
Olah
,
C.
, and
Shlens
,
J.
,
2017
, “
Conditional Image Synthesis With Auxiliary Classifier GANs
,”
34th International Conference on Machine Learning
,
Sydney, Australia
, PMLR, pp.
2642
2651
.
43.
Vries
,
H.
,
Strub
,
F.
,
Mary
,
J.
,
Larochelle
,
H.
,
Pietquin
,
O.
, and
Courville
,
A.
, “
Modulating early visual processing by language
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
, Vol.
30
,
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
, eds., Curran Associates, Inc., pp.
6594
6604
.
44.
Cunningham
,
J.
,
Shu
,
D.
,
Simpson
,
T.
, and
Tucker
,
C. S.
,
2020
, “
A Sparsity Preserving Genetic Algorithm for Extracting Diverse Functional 3D Designs From Deep Generative Neural Networks
,”
Des. Sci
,
6
, p.
e11
.
45.
dos Santos Tanaka
,
F. H. K.
, and
Aranha
,
C.
,
2019
, “
Data Augmentation Using GANs
,”
CoRR
.
46.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3d Surface Construction Algorithm
,”
ACM Siggraph Comput. Graph.
,
21
(
4
), pp.
163
169
.
You do not currently have access to this content.