Abstract

One of the critical components in industrial gas turbines (IGT) is the turbine blade. The design of turbine blades needs to consider multiple aspects like aerodynamic efficiency, durability, safety, and manufacturing, which make the design process sequential and iterative. The sequential nature of these iterations forces a long design cycle time, ranging from several months to years. Due to the reactionary nature of these iterations, little effort has been made to accumulate data in a manner that allows for deep exploration and understanding of the total design space. This is exemplified in the process of designing the individual components of the IGT, resulting in a potential unrealized efficiency. To overcome the aforementioned challenges, we demonstrate a probabilistic inverse design machine learning (PMI) framework to carry out an explicit inverse design. PMI calculates the design explicitly without excessive costly iteration and overcomes the challenges associated with ill-posed inverse problems. In this study, the framework will be demonstrated on inverse aerodynamic design of three-dimensional turbine blades.

References

1.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
,
2004
, “
Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition
,”
AIAA. J.
,
42
(
8
), pp.
1505
1516
.
2.
Dulikravich
,
G.
, and
Baker
,
D.
,
1999
, “
Aerodynamic Shape Inverse Design Using a Fourier Series Method
,”
37th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 11–14
, p.
185
.
3.
Obayashi
,
S.
, and
Takanashi
,
S.
,
1996
, “
Genetic Optimization of Target Pressure Distributions for Inverse Design Methods
,”
AIAA. J.
,
34
(
5
), pp.
881
886
.
4.
Dulikravich
,
G.
,
1995
, “
Shape Inverse Design and Optimization for Three-dimensional Aerodynamics
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, p.
695
.
5.
Bell
,
R.
, and
Cedar
,
R.
,
1991
, “
An Inverse Method for the Aerodynamic Design of Three-Dimensional Aircraft Engine Nacelles
,”
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
,
Washington, DC
,
Oct. 23–25
6.
Boselli
,
P.
, and
Zangeneh
,
M.
,
2011
, “
An Inverse Design Based Methodology for Rapid 3D Multi-Objective/Multidisciplinary Optimization of Axial Turbines
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 54679
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
1459
1468
.
7.
de Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
,
2003
, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
,
125
(
2
), pp.
310
316
.
8.
Borges
,
J. E.
,
1990
, “
A Three-Dimensional Inverse Method for Turbomachinery: Part I Theory
,”
ASME J. Turbomach.
,
112
(
3
), pp.
346
354
.
9.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C. -H.
,
Zagade
,
P.
,
Gautham
,
B.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
.
10.
Nickless
,
A.
,
Rayner
,
P.
,
Erni
,
B.
, and
Scholes
,
R.
,
2018
, “
Comparison of the Genetic Algorithm and Incremental Optimisation Routines for a Bayesian Inverse Modelling Based Network Design
,”
Inverse Probl.
,
34
(
5
), p.
055006
.
11.
White
,
A.
,
Mahadevan
,
S.
,
Grey
,
Z.
,
Schmucker
,
J.
, and
Karl
,
A.
,
2021
, “
Efficient Calibration of a Turbine Disc Heat Transfer Model Under Uncertainty
,”
J. Thermophys. Heat. Transfer.
,
35
(
2
), pp.
234
244
.
12.
Hou
,
L.
, and
Jiao
,
R. J.
,
2020
, “
Data-Informed Inverse Design by Product Usage Information: a Review, Framework and Outlook
,”
J. Intell. Manuf.
,
31
(
3
), pp.
529
552
.
13.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021014
.
14.
Roy
,
S.
,
Das
,
R.
, and
Saha
,
U. K.
,
2018
, “
An Inverse Method for Optimization of Geometric Parameters of a Savonius-Style Wind Turbine
,”
Energy. Convers. Manage.
,
155
, pp.
116
127
.
15.
Jin
,
K. H.
,
McCann
,
M. T.
,
Froustey
,
E.
, and
Unser
,
M.
,
2017
, “
Deep Convolutional Neural Network for Inverse Problems in Imaging
,”
IEEE Trans. Image Process.
,
26
(
9
), pp.
4509
4522
.
16.
Chen
,
H.
,
Zhang
,
Y.
,
Kalra
,
M. K.
,
Lin
,
F.
,
Chen
,
Y.
,
Liao
,
P.
,
Zhou
,
J.
, and
Wang
,
G.
,
2017
, “
Low-Dose Ct With a Residual Encoder-Decoder Convolutional Neural Network
,”
IEEE Trans. Medical Imaging
,
36
(
12
), pp.
2524
2535
.
17.
Adler
,
J.
, and
Öktem
,
O.
,
2017
, “
Solving Ill-Posed Inverse Problems Using Iterative Deep Neural Networks
,”
Inverse Probl.
,
33
(
12
), p.
124007
.
18.
Adler
,
J.
, and
Öktem
,
O.
,
2018
, “
Learned Primal-Dual Reconstruction
,”
IEEE Trans. Medical Imaging
,
37
(
6
), pp.
1322
1332
.
19.
Hauptmann
,
A.
,
Lucka
,
F.
,
Betcke
,
M.
,
Huynh
,
N.
,
Adler
,
J.
,
Cox
,
B.
,
Beard
,
P.
,
Ourselin
,
S.
, and
Arridge
,
S.
,
2018
, “
Model-Based Learning for Accelerated, Limited-View 3-d Photoacoustic Tomography
,”
IEEE Trans. Med. Imaging
,
37
(
6
), pp.
1382
1393
.
20.
Mosser
,
L.
,
Dubrule
,
O.
, and
Blunt
,
M. J.
,
2020
, “
Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior
,”
Math. Geosci.
,
52
(
1
), pp.
53
79
.
21.
Lunz
,
S.
,
Öktem
,
O.
, and
Schönlieb
,
C.-B.
,
2018
, “
Adversarial Regularizers in Inverse Problems
,”
Advances in Neural Information Processing Systems
,
Montréal, Canada
,
Dec. 3–8
, pp.
8507
8516
.
22.
Laloy
,
E.
,
Hérault
,
R.
,
Jacques
,
D.
, and
Linde
,
N.
,
2018
, “
Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network
,”
Water. Resour. Res.
,
54
(
1
), pp.
381
406
.
23.
Ghosh
,
S.
,
Padmanabha
,
G. A.
,
Peng
,
C.
,
Atkinson
,
S.
,
Andreoli
,
V.
,
Pandita
,
P.
,
Vandeputte
,
T.
,
Zabaras
,
N.
,
Wang
,
L.
, and
Khan
,
G.
,
2021
, “
Pro-ml Ideas: A Probabilistic Framework for Explicit Inverse Design Using Invertible Neural Network
,”
AIAA Scitech 2021 Forum
,
Virtual Online
,
Jan. 11–15
, p.
0465
.
24.
Ghosh
,
S.
,
Pandita
,
P.
,
Atkinson
,
S.
,
Subber
,
W.
,
Zhang
,
Y.
,
Kumar
,
N. C.
,
Chakrabarti
,
S.
, and
Wang
,
L.
,
2020
, “
Advances in Bayesian Probabilistic Modeling for Industrial Applications
,”
ASCE-ASME J. Risk and Uncert in Eng. Syst. Part B Mech. Eng.
,
6
(
3
), p.
030904
.
25.
Pandita
,
P.
,
Tsilifis
,
P.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2021
, “
Scalable Fully Bayesian Gaussian Process Modeling and Calibration With Adaptive Sequential Monte Carlo for Industrial Applications
,”
ASME J. Mech. Des.
,
143
(
7
), p.
074502
.
26.
Ghosh
,
S.
,
Kristensen
,
J.
,
Zhang
,
Y.
,
Subber
,
W.
, and
Wang
,
L.
,
2019
, “
A Strategy for Adaptive Sampling of Multi-Fidelity Gaussian Processes to Reduce Predictive Uncertainty
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
.
27.
Pandita
,
P.
,
Bilionis
,
I.
, and
Panchal
,
J.
,
2016
, “
Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111412
.
28.
Pandita
,
P.
,
Bilionis
,
I.
,
Panchal
,
J.
,
Gautham
,
B.
,
Joshi
,
A.
, and
Zagade
,
P.
,
2018
, “
Stochastic Multiobjective Optimization on a Budget: Application to Multipass Wire Drawing With Quantified Uncertainties
,”
Int. J. Uncertainty Quantif.
,
8
(
3
), p.
233
.
29.
Pandita
,
P.
,
Tsilifis
,
P.
,
Awalgaonkar
,
N. M.
,
Bilionis
,
I.
, and
Panchal
,
J.
,
2021
, “
Surrogate-Based Sequential Bayesian Experimental Design Using Non-Stationary Gaussian Processes
,”
Comput. Methods. Appl. Mech. Eng.
,
385
, p.
114007
.
30.
Hennig
,
P.
, and
Schuler
,
C. J.
,
2012
, “
Entropy Search for Information-Efficient Global Optimization
,”
J. Machine Learning Res.
,
13
(
6
), pp.
1809
1837
.
31.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
32.
Kennedy
,
M.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models (With Discussion)
,”
J. R. Statist. Soc. (Ser. B)
,
68
(
3
), pp.
425
464
.
33.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Nets
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
34.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “Auto-Encoding Variational Bayes,”
2nd International Conference on Learning Representations. ICLR Conference Track Proceedings
,
Banff, AB, Canada
,
Apr. 14–16
.
35.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1125
1134
.
36.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “Conditional Generative Adversarial Nets,” Preprint arXiv:1411.1784.
37.
Sohn
,
K.
,
Lee
,
H.
, and
Yan
,
X.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 7–12
, pp.
3483
3491
.
38.
Ardizzone
,
L.
,
Lüth
,
C.
,
Kruse
,
J.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “Guided Image Generation With Conditional Invertible Neural Networks,” Preprint
arXiv:1907.02392
.
39.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2017
, “
Density Estimation Using Real NVP
,”
ICLR Conference
,
Toulon, France
,
Apr. 24–26
.
40.
Padmanabha
,
G. A.
, and
Zabaras
,
N.
,
2021
, “
Solving Inverse Problems Using Conditional Invertible Neural Networks
,”
J. Comp. Phys.
,
433
, p.
110194
.
41.
Geneva
,
N.
, and
Zabaras
,
N.
,
2020
, “
Multi-Fidelity Generative Deep Learning Turbulent Flows
,”
Found. Data Sci.
,
2
(
4
), pp.
391
428
.
42.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.
43.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
Proc. ICML, Vol. 30
,
Atlanta, GA
,
June 16–21
,
Citeseer
, p.
3
.
44.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
ICLR Conference
,
San Diego, CA
,
May 7–9
.
You do not currently have access to this content.