Abstract

In the past two decades, there has been increasing use of semantic networks in engineering design for supporting various activities, such as knowledge extraction, prior art search, idea generation, and evaluation. Leveraging large-scale pre-trained graph knowledge databases to support engineering design-related natural language processing (NLP) tasks has attracted a growing interest in the engineering design research community. Therefore, this study aims to provide a survey of the state-of-the-art semantic networks for engineering design and propositions of future research to build and utilize large-scale semantic networks as knowledge bases to support engineering design research and practice. The survey shows that WordNet, ConceptNet, and other semantic networks, which contain common-sense knowledge or are trained on non-engineering data sources, are primarily used by engineering design researchers to develop methods and tools. Meanwhile, there are emerging efforts in constructing engineering and technical-contextualized semantic network databases, such as B-Link and TechNet, through retrieving data from technical data sources and employing unsupervised machine learning approaches. On this basis, we recommend six strategic future research directions to advance the development and uses of large-scale semantic networks for artificial intelligence applications in engineering design.

References

1.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput.-Aided Des.
,
45
(
2
), pp.
204
228
.
2.
Bertola
,
P.
, and
Teixeira
,
J. C.
,
2003
, “
Design as a Knowledge Agent: How Design as a Knowledge Process is Embedded Into Organizations to Foster Innovation
,”
Des. Stud.
,
24
(
2
), pp.
181
194
.
3.
Sowa
,
J. F.
,
1992
,”
Semantic Networks,” Encyclopaedia of Artificial Intelligence
,
S. C.
Shapiro
, ed.,
John Wiley & Sons
,
New York
, pp.
1493
1511
.
4.
Boden
,
M. A.
,
2004
,
The Creative Mind: Myths and Mechanisms
,
Routledge
,
London, UK
.
5.
Fernandes
,
R. P.
,
Grosse
,
I. R.
,
Krishnamurty
,
S.
,
Witherell
,
P.
, and
Wileden
,
J. C.
,
2011
, “
Semantic Methods Supporting Engineering Design Innovation
,”
Adv. Eng. Inform.
,
25
(
2
), pp.
185
192
.
6.
Li
,
Z.
, and
Ramani
,
K.
,
2007
, “
Ontology-Based Design Information Extraction and Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(
2
), pp.
137
154
.
7.
Miller
,
G. A.
,
1995
, “
WordNet: A Lexical Database for English
,”
Commun. ACM
,
38
(
11
), pp.
39
41
.
8.
Liu
,
H.
, and
Singh
,
P.
,
2004
, “
ConceptNet—A Practical Commonsense Reasoning Tool-Kit
,”
BT Technol. J.
,
22
(
4
), pp.
211
226
.
9.
Speer
,
R.
,
Chin
,
J.
, and
Havasi
,
C.
,
2017
, “
ConceptNet 5.5: an Open Multilingual Graph of General Knowledge
,”
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
,
San Francisco, CA
,
Feb. 4–9
, pp.
4444
4451
.
10.
Speer
,
R.
, and
Havasi
,
C.
,
2012
, “
Representing General Relational Knowledge in ConceptNet 5
,”
Proceedings of the Eight International Conference on Language Resources and Evaluation
,
Istanbul, Turkey
,
May 23–25
, pp.
3679
3686
.
11.
Suchanek
,
F. M.
,
Kasneci
,
G.
, and
Weikum
,
G.
,
2007
, “
Yago: a Core of Semantic Knowledge
,”
Proceedings of the 16th International Conference on World Wide Web
,
Banff, Alberta, Canada
,
May 8–12
, pp.
697
706
.
12.
Carlson
,
A.
,
Betteridge
,
J.
,
Kisiel
,
B.
,
Settles
,
B.
,
Hruschka
,
E. R.
, and
Mitchell
,
T. M.
,
2010
, “
Toward an Architecture for Never-Ending Language Learning
,”
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
,
Atlanta, GA
,
July 11–15
, pp.
1306
1313
.
13.
Mitchell
,
T.
,
Cohen
,
W.
,
Hruschka
,
E.
,
Talukdar
,
P.
,
Yang
,
B.
,
Betteridge
,
J.
,
Carlson
,
A.
,
Dalvi
,
B.
,
Gardner
,
M.
,
Kisiel
,
B.
,
Krishnamurthy
,
J.
,
Lao
,
N.
,
Mazaitis
,
K.
,
Mohamed
,
T.
,
Nakashole
,
N.
,
Platanios
,
E.
,
Ritter
,
A.
,
Samadi
,
M.
,
Settles
,
B.
,
Wang
,
R.
,
Wijaya
,
D.
,
Gupta
,
A.
,
Chen
,
X.
,
Saparov
,
A.
,
Greaves
,
M.
, and
Welling
,
J.
,
2018
, “
Never-Ending Learning
,”
Commun. ACM
,
61
(
5
), pp.
103
115
.
14.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
15.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
.
16.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2006
, “
A Validation Study of an Automated Concept Generator Design Tool
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
283
294
.
17.
Otto
,
K.
, and
Wood
,
K.
,
1997
, “Conceptual and Configuration Design of Products and Assemblies,”
ASM Handbook, Materials Selection and Design
, Vol.
20
,
G. E.
Dieter
, ed.,
ASM International
,
Ohio, USA
, pp.
15
32
.
18.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
19.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2018
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
.
20.
Mukherjea
,
S.
,
Bamba
,
B.
, and
Kankar
,
P.
,
2005
, “
Information Retrieval and Knowledge Discovery Utilizing a Biomedical Patent Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
8
), pp.
1099
1110
.
21.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2011
, “DANE: Fostering Creativity in and Through Biologically Inspired Design,”
Design Creativity 2010
,
T.
Taura
, and
Y.
Nagai
, eds.,
Springer
,
London
, pp.
115
122
.
22.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2012
, “
Cognitive, Collaborative, Conceptual and Creative—Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput.-Aided Des.
,
44
(
10
), pp.
879
900
.
23.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), p.
26
.
24.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.
25.
McCaffrey
,
T.
, and
Spector
,
L.
,
2017
, “
An Approach to Human–Machine Collaboration in Innovation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
1
), pp.
1
15
.
26.
Siddharth
,
L.
, and
Chakrabarti
,
A.
,
2018
, “
Evaluating the Impact of Idea-Inspire 4.0 on Analogical Transfer of Concepts
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
431
448
.
27.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
28.
Li
,
L.
,
Gao
,
S.
,
Liu
,
Y.
, and
Qin
,
X.
,
2016
, “
Enhanced SPARQL-Based Design Rationale Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
4
), pp.
406
423
.
29.
Hu
,
J.
,
Ma
,
J.
,
Feng
,
J.-F.
, and
Peng
,
Y.-H.
,
2017
, “
Research on New Creative Conceptual Design System Using Adapted Case-Based Reasoning Technique
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
1
), pp.
16
29
.
30.
Georgiev
,
G. V.
,
Sumitani
,
N.
, and
Taura
,
T.
,
2017
, “
Methodology for Creating new Scenes Through the use of Thematic Relations for Innovative Designs
,”
Int. J. Des. Creat. Innov.
,
5
(
1–2
), pp.
78
94
.
31.
Luo
,
J.
,
Song
,
B.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Design Opportunity Conception Using the Total Technology Space Map
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
449
461
.
32.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2019
, “
Computer-Aided Design Ideation Using InnoGPS
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V02AT03A011
.
33.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl. Based Syst.
,
218
, p.
106873
.
34.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
.
35.
Acharya
,
S.
, and
Chakrabarti
,
A.
,
2020
, “
A Conceptual Tool for Environmentally Benign Design: Development and Evaluation of a “Proof of Concept”
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
1
), pp.
30
44
.
36.
De Vries
,
B.
,
Jessurun
,
J.
,
Segers
,
N.
, and
Achten
,
H.
,
2005
, “
Word Graphs in Architectural Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
4
), pp.
277
288
.
37.
Segers
,
N. M.
,
de Vries
,
B.
, and
Achten
,
H. H.
,
2005
, “
Do Word Graphs Stimulate Design?
,”
Des. Stud.
,
26
(
6
), pp.
625
647
.
38.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design Through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(
1
), pp.
45
59
.
39.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
40.
Taura
,
T.
,
Yamamoto
,
E.
,
Fasiha
,
M. Y. N.
,
Goka
,
M.
,
Mukai
,
F.
,
Nagai
,
Y.
, and
Nakashima
,
H.
,
2012
, “
Constructive Simulation of Creative Concept Generation Process in Design: A Research Method for Difficult-to-Observe Design-Thinking Processes
,”
J. Eng. Des.
,
23
(
4
), pp.
297
321
.
41.
Sosa
,
R.
,
Wood
,
K. L.
, and
Mohan
,
R. E.
,
2014
, “
Identifying Opportunities for the Design of Innovative Reconfigurable Robotics
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
New York
,
Aug. 17–20
, p. V007T07A010.
42.
Yoon
,
J.
,
Park
,
H.
,
Seo
,
W.
,
Lee
,
J.-M.
,
Coh
,
B.-y.
, and
Kim
,
J.
,
2015
, “
Technology Opportunity Discovery (TOD) From Existing Technologies and Products: A Function-Based TOD Framework
,”
Technol. Forecast. Soc. Change
,
100
, pp.
153
167
.
43.
Geum
,
Y.
, and
Park
,
Y.
,
2016
, “
How to Generate Creative Ideas for Innovation: A Hybrid Approach of WordNet and Morphological Analysis
,”
Technol. Forecast. Soc. Change
,
111
, pp.
176
187
.
44.
Lee
,
S.
,
McAdams
,
D. A.
, and
Morris
,
E.
,
2017
, “
Categorizing Biological Information Based on Function–Morphology for Bioinspired Conceptual Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
3
), pp.
359
375
.
45.
Cheong
,
H.
,
Li
,
W.
,
Cheung
,
A.
,
Nogueira
,
A.
, and
Iorio
,
F.
,
2017
, “
Automated Extraction of Function Knowledge From Text
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111407
.
46.
Kan
,
J. W. T.
, and
Gero
,
J. S.
,
2018
, “
Characterizing Innovative Processes in Design Spaces Through Measuring the Information Entropy of Empirical Data From Protocol Studies
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
1
), pp.
32
43
.
47.
Georgiev
,
G. V.
, and
Georgiev
,
D. D.
,
2018
, “
Enhancing User Creativity: Semantic Measures for Idea Generation
,”
Knowl. Based Syst.
,
151
, pp.
1
15
.
48.
Narsale
,
S.
,
Chen
,
Y.
,
Mohan
,
M.
, and
Shah
,
J. J.
,
2019
, “
Design Ideator: A Conceptual Design Toolbox
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041007
.
49.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
50.
Nomaguchi
,
Y.
,
Kawahara
,
T.
,
Shoda
,
K.
, and
Fujita
,
K.
,
2019
, “
Assessing Concept Novelty Potential With Lexical and Distributional Word Similarity for Innovative Design
,”
Proc. Des. Soc. Int. Conf. Eng. Des.
,
1
(
1
), pp.
1413
1422
.
51.
Liu
,
Q.
,
Wang
,
K.
,
Li
,
Y.
, and
Liu
,
Y.
,
2020
, “
Data-Driven Concept Network for Inspiring Designers’ Idea Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031004
.
52.
Gilon
,
K.
,
Chan
,
J.
,
Ng
,
F. Y.
,
Liifshitz-Assaf
,
H.
,
Kittur
,
A.
, and
Shahaf
,
D.
,
2018
, “
Analogy Mining for Specific Design Needs
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Association for Computing Machinery
,
Montreal QC, Canada
, Paper 121.
53.
Lenat
,
D. B.
,
1995
, “
CYC: a Large-Scale Investment in Knowledge Infrastructure
,”
Commun. ACM
,
38
(
11
), pp.
33
38
.
54.
Yuan
,
S.-T. D.
, and
Hsieh
,
P.-K.
,
2015
, “
Using Association Reasoning Tool to Achieve Semantic Reframing of Service Design Insight Discovery
,”
Des. Stud.
,
40
, pp.
143
175
.
55.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R. N.
,
2018
, “
The Combinator—A Computer-Based Tool for Creative Idea Generation Based on a Simulation Approach
,”
Des. Sci.
,
4
, p.
e11
.
56.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R. N.
,
2018
, “
A Computational Tool for Creative Idea Generation Based on Analogical Reasoning and Ontology
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
462
477
.
57.
Chen
,
T.-J.
, and
Krishnamurthy
,
V. R.
,
2020
, “
Investigating a Mixed-Initiative Workflow for Digital Mind-Mapping
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101404
.
58.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proc. Des. Soc. Des. Conf.
,
1
, pp.
167
176
.
59.
Bae
,
S. S.
,
Kwon
,
O.-H.
,
Chandrasegaran
,
S.
, and
Ma
,
K.-L.
,
2020
, “
Spinneret: Aiding Creative Ideation Through Non-Obvious Concept Associations
,”
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
13
.
60.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Evaluating Crowdsourced Design Concepts With Machine Learning
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V007T06A006
.
61.
Bollacker
,
K.
,
Evans
,
C.
,
Paritosh
,
P.
,
Sturge
,
T.
, and
Taylor
,
J.
,
2008
, “
Freebase: a Collaboratively Created Graph Database for Structuring Human Knowledge
,”
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
,
Vancouver, Canada
,
June 9–12
, pp.
1247
1250
.
62.
Chen
,
L.
,
Wang
,
P.
,
Dong
,
H.
,
Shi
,
F.
,
Han
,
J.
,
Guo
,
Y.
,
Childs
,
P. R. N.
,
Xiao
,
J.
, and
Wu
,
C.
,
2019
, “
An Artificial Intelligence Based Data-Driven Approach for Design Ideation
,”
J. Vis. Commun. Image Represent.
,
61
, pp.
10
22
.
63.
Sarica
,
S.
, and
Luo
,
J.
,
2021
, “
Design Knowledge Representation With Technology Semantic Network
,”
Proc. Des. Soc.
,
1
, pp.
1043
1052
.
64.
Sarica
,
S.
,
Song
,
B.
,
Low
,
E.
, and
Luo
,
J.
,
2019
, “
Engineering Knowledge Graph for Keyword Discovery in Patent Search
,”
Proc. Des. Soc. Int. Conf. Eng. Des.
,
1
(
1
), pp.
2249
2258
.
65.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Technology Knowledge Graph for Design Exploration: Application to Designing the Future of Flying Cars
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V001T02A028
.
66.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
Artif. Intell. Eng. Des. Anal. Manuf.
, pp.
1
19
.
67.
Dong
,
X.
,
Gabrilovich
,
E.
,
Heitz
,
G.
,
Horn
,
W.
,
Lao
,
N.
,
Murphy
,
K.
,
Strohmann
,
T.
,
Sun
,
S.
, and
Zhang
,
W.
,
2014
, “
Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion
,”
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
New York, NY
,
Aug. 24–27
, pp.
601
610
.
68.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Efficient Estimation of Word Representations in Vector Space
,”
arXiv preprint
.
69.
Pennington
,
J.
,
Socher
,
R.
, and
Manning
,
C. D.
,
2014
, “
Glove: Global Vectors for Word Representation
,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
Doha, Qatar
,
Oct. 25–29
, pp.
1532
1543
.
70.
Kim
,
H.
, and
Kim
,
K.
,
2012
, “
Causality-Based Function Network for Identifying Technological Analogy
,”
Expert Syst. Appl.
,
39
(
12
), pp.
10607
10619
.
71.
Ahmed
,
S.
,
Kim
,
S.
, and
Wallace
,
K. M.
,
2006
, “
A Methodology for Creating Ontologies for Engineering Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
2
), pp.
132
140
.
72.
Li
,
Z.
,
Raskin
,
V.
, and
Ramani
,
K.
,
2008
, “
Developing Engineering Ontology for Information Retrieval
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011003
.
73.
Li
,
X.
,
Chen
,
C.-H.
,
Zheng
,
P.
,
Wang
,
Z.
,
Jiang
,
Z.
, and
Jiang
,
Z.
,
2020
, “
A Knowledge Graph-Aided Concept–Knowledge Approach for Evolutionary Smart Product–Service System Development
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101403
.
74.
Ishii
,
K.
,
1995
, “
Life-Cycle Engineering Design
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
42
47
.
75.
Glier
,
M. W.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2014
, “
Exploring Automated Text Classification to Improve Keyword Corpus Search Results for Bioinspired Design
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111103
.
76.
Munoz
,
D.
, and
Tucker
,
C. S.
,
2016
, “
Modeling the Semantic Structure of Textually Derived Learning Content and its Impact on Recipients’ Response States
,”
ASME J. Mech. Des.
,
138
(
4
), p.
042001
.
77.
Li
,
Z.
,
Liu
,
M.
,
Anderson
,
D. C.
, and
Ramani
,
K.
,
2005
, “
Semantics-Based Design Knowledge Annotation and Retrieval
,”
Proc. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Sept. 24–28
, pp.
799
808
.
78.
Li
,
Z.
,
Yang
,
M. C.
, and
Ramani
,
K.
,
2009
, “
A Methodology for Engineering Ontology Acquisition and Validation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
37
51
.
79.
Chang
,
X.
,
Rai
,
R.
, and
Terpenny
,
J.
,
2010
, “
Development and Utilization of Ontologies in Design for Manufacturing
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021009
.
80.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Lee
,
W. B.
,
2010
, “
Multi-Facet Product Information Search and Retrieval Using Semantically Annotated Product Family Ontology
,”
Inf. Process. Manage.
,
46
(
4
), pp.
479
493
.
81.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Lee
,
W. B.
,
2011
, “
A Methodology for Building a Semantically Annotated Multi-Faceted Ontology for Product Family Modelling
,”
Adv. Eng. Inform.
,
25
(
2
), pp.
147
161
.
82.
Liu
,
Y.
,
Lim
,
S. C. J.
, and
Lee
,
W. B.
,
2013
, “
Product Family Design Through Ontology-Based Faceted Component Analysis, Selection, and Optimization
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081007
.
83.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2009
,
Engineering Design
,
McGraw-Hill Higher Education
,
Boston, MA
.
84.
Peters
,
M. E.
,
Neumann
,
M.
,
Iyyer
,
M.
,
Gardner
,
M.
,
Clark
,
C.
,
Lee
,
K.
, and
Zettlemoyer
,
L.
,
2018
, “
Deep Contextualized Word Representations
,”
Proceedings of NAACL-HLT 2018
,
1
, pp.
2227
2237
.
85.
Howard
,
J.
, and
Ruder
,
S.
,
2018
, “
Universal Language Model Fine-tuning for Text Classification
,”
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
,
1
, pp.
328
339
.
86.
Radford
,
A.
,
Narasimhan
,
K.
,
Salimans
,
T.
, and
Sutskever
,
I.
,
2018
, “
Improving Language Understanding by Generative Pre-Training
,” https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
87.
Radford
,
A.
,
Wu
,
J.
,
Child
,
R.
,
Luan
,
D.
,
Amodei
,
D.
, and
Sutskever
,
I.
,
2019
, “
Language Models are Unsupervised Multitask Learners
,”
OpenAI blog
,
1
(
8
), p.
9
.
88.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
,
Shyam
,
P.
,
Sastry
,
G.
, and
Askell
,
A.
,
2020
, “
Language Models are Few-Shot Learners
,”
34th Conference on Neural Information Processing Systems (NeurIPS 2020)
,
Vancouver, Canada
,
Dec. 6–12
.
89.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of NAACL-HLT 2019
,
1
, pp.
4171
4186
.
90.
Yang
,
Z.
,
Dai
,
Z.
,
Yang
,
Y.
,
Carbonell
,
J.
,
Salakhutdinov
,
R.
, and
Le
,
Q. V.
,
2019
, “
XLNet: Generalized Autoregressive Pretraining for Language Understanding
,”
33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
,
Vancouver, Canada
,
Dec. 8–14
.
91.
Lan
,
Z.
,
Chen
,
M.
,
Goodman
,
S.
,
Gimpel
,
K.
,
Sharma
,
P.
, and
Soricut
,
R.
,
2019
, “
Albert: A Lite Bert for Self-Supervised Learning of Language Representations
,”
ICLR 2020
,
Addis Ababa, Ethiopia
,
Apr. 26–30
.
92.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2014
, “The Function-Behaviour-Structure Ontology of Design,”
An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations
,
A.
Chakrabarti
, and
L. T. M.
Blessing
, eds.,
Springer
,
London
, pp.
263
283
.
93.
Zaveri
,
A.
,
Rula
,
A.
,
Maurino
,
A.
,
Pietrobon
,
R.
,
Lehmann
,
J.
, and
Auer
,
S.
,
2016
, “
Quality Assessment for Linked Data: A Survey
,”
Semant. Web
,
7
(
1
), pp.
63
93
.
94.
Paulheim
,
H.
,
2017
, “
Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods
,”
Semant. Web
,
8
(
3
), pp.
489
508
.
95.
Forbes
,
H.
,
Han
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Crowdsourcing Data-Driven Approach for Innovation
,”
Int. J. Syst. Innov.
,
6
(
2020
), pp.
9
19
.
96.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
Machine Learning-Based Design Concept Evaluation
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031113
.
97.
Forbes
,
H. L.
, and
Schaefer
,
D.
,
2018
, “
Crowdsourcing in Product Development: Current State and Future Research Directions
,”
DS92: Proceedings of the DESIGN 2018 15th International Design Conference
,
Dubrovnik, Croatia
,
May 21–24
, pp.
579
588
.
98.
Song
,
C.
,
Luo
,
J.
,
Hölttä-Otto
,
K.
,
Seering
,
W.
, and
Otto
,
K.
,
2020
, “
Crowdfunding for Design Innovation: Prediction Model With Critical Factors
,”
IEEE Trans. Eng. Manage.
, pp.
1
12
.
99.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
100.
Childs
,
P. R. N.
,
2018
,
Mechanical Design Engineering Handbook
,
Butterworth-Heinemann
,
Oxford, UK
.
101.
Kerne
,
A.
,
Smith
,
S. M.
,
Koh
,
E.
,
Choi
,
H.
, and
Graeber
,
R.
,
2008
, “
An Experimental Method for Measuring the Emergence of New Ideas in Information Discovery
,”
Int. J. Hum. Comput. Interact.
,
24
(
5
), pp.
460
477
.
102.
Kerne
,
A.
,
Webb
,
A. M.
,
Smith
,
S. M.
,
Linder
,
R.
,
Lupfer
,
N.
,
Qu
,
Y.
,
Moeller
,
J.
, and
Damaraju
,
S.
,
2014
, “
Using Metrics of Curation to Evaluate Information-Based Ideation
,”
ACM Trans. Comput.-Hum. Interact.
,
21
(
3
), pp.
1
48
.
103.
Makri
,
S.
,
Hsueh
,
T.-L.
, and
Jones
,
S.
,
2019
, “
Ideation as an Intellectual Information Acquisition and Use Context: Investigating Game Designers’ Information-Based Ideation Behavior
,”
J. Assoc. Inf. Sci. Technol.
,
70
(
8
), pp.
775
787
.
104.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Zhang
,
G.
,
Stump
,
G.
,
Balon
,
C.
,
Miller
,
S. W.
,
Yukish
,
M.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Toward Hybrid Teams: A Platform to Understand Human-Computer Collaboration During The Design of Complex Engineered Systems
,”
Proc. Des. Soc. Des. Conf.
,
1
, pp.
1551
1560
.
105.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
.
106.
Kim
,
H. H. M.
,
Liu
,
Y.
,
Wang
,
C. C. L.
, and
Wang
,
Y.
,
2017
, “
Special Issue: Data-Driven Design (D3)
,”
ASME J. Mech. Des.
,
139
(
11
), p.
128002
.
107.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsk–y
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
You do not currently have access to this content.