Abstract

The design of mechanisms for the static balancing of a rotating and weight-varying link has tremendous implications for mechanical structures and robotic systems. This article presents a compact gear-spring mechanism (CGSM) for the static balancing of variable payloads. The CGSM is constructed with a three-gear train and a tension spring mounted on a rotating link with a mass to be statically balanced. The static balancing design of the CGSM is realized by imposing geometrical constraints on the links and then deriving the spring parameters from analytical equations. The payload variability of the CGSM is obtained through an energy-free adjustment of the settling position of the spring when the rotating link is vertical. A theoretical model and experimental tests are provided to demonstrate the performance of the CGSM. Experimental studies showed that the CGSM could be maintained over a prescribed workspace without input forces. The actuator torque and accumulated energy consumption of the CGSM were practically decreased by up to 89.4% and 95.7%, respectively, within a range of payloads from 0.2 kg to 0.8 kg.

References

1.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
2.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
3.
Gosselin
,
C.
,
2008
, “Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
and
J.
Xi
, eds.,
Springer-Verlag Limited
,
London
, pp.
27
48
.
4.
Martini
,
A.
,
Troncossi
,
M.
, and
Rivola
,
A.
,
2019
, “
Algorithm for the Static Balancing of Serial and Parallel Mechanisms Combining Counterweights and Springs: Generation, Assessment and Ranking of Effective Design Variants
,”
Mech. Mach. Theory
,
137
, pp.
336
354
.
5.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
6.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
.
7.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
8.
Eckenstein
,
N.
, and
Yim
,
M.
,
2013
, “
Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041013
.
9.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
, p.
103840
.
10.
Kuo
,
C.-H.
,
Nguyen-Vu
,
L.
, and
Chou
,
L.-T.
,
2018
, “
Static Balancing of a Reconfigurable Linkage With Switchable Mobility by Using a Single Counterweight
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
11.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2012
, “
Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
12
21
.
12.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
.
13.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072305
.
14.
Nguyen
,
V. L.
,
2019
, “
Gravity Compensation of Articulated Robots Using Spring Four-Bar Mechanisms
,”
The 7th International Symposium on Multibody Systems and Mechatronics (MuSMe)
,
Córdoba, Argentina
,
Oct. 12–15
, pp.
201
209
.
15.
Tschiersky
,
M.
,
Hekman
,
E. E.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2019
, “
Gravity Balancing Flexure Springs for an Assistive Elbow Orthosis
,”
IEEE Trans. Med. Rob. Bionics
,
1
(
3
), pp.
177
188
.
16.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
17.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,” I
EEE Robot. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
18.
Peng
,
Y.
,
Bu
,
W.
, and
Chen
,
J.
,
2022
, “
Design of the Wearable Spatial Gravity Balance Mechanism
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031006
.
19.
Peng
,
Y.
, and
Bu
,
W.
,
2022
, “
Design of Gravity-Balanced Exoskeletons With Linkage-Belt Hybrid Transmissions
,”
Mech. Mach. Theory
,
170
, p.
104660
.
20.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
,
May 20
, p.
2287
2294
.
21.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2022
, “
Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011011
.
22.
van der Wijk
,
V.
,
2020
, “
The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for Synthesis of Shaking Force Balanced and Gravity Force Balanced Mechanisms
,”
Mech. Mach. Theory
,
150
, p.
103815
.
23.
Kuo
,
C.-H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L.-T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: A Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
24.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
25.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
26.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
27.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
28.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Geometric Approach to the Static Balancing of Mechanisms Constructed Using Spherical Kinematic Chain Units
,”
Mech. Mach. Theory
,
140
, pp.
305
320
.
29.
Nguyen
,
V. L.
,
2022
, “
A Design Approach for Gravity Compensators Using Planar Four-Bar Mechanisms and a Linear Spring
,”
Mech. Mach. Theory
,
172
, p.
104770
.
30.
Kim
,
H.-S.
,
Min
,
J.-K.
, and
Song
,
J.-B.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
230
235
.
31.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
32.
Linh
,
N. V.
, and
Kuo
,
C.-H.
,
2019
, “
A Gear-Slider Gravity Compensation Mechanism: Design and Experimental Study
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)
,
Anaheim, CA
,
Aug. 18–21
, Paper No. IDETC2019-97602.
33.
Shieh
,
W.-B.
, and
Chou
,
B.-S.
,
2015
, “
A Novel Spring Balancing Device on the Basis of a Scotch Yoke Mechanism
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
206
212
.
34.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
35.
Hung
,
Y.-C.
, and
Kuo
,
C.-H.
,
2017
, “A Novel One-DoF Gravity Balancer Based on Cardan Gear Mechanism,”
Mechanisms and Machine Science, New Trends in Mechanism and Machine Science
,
P.
Wenger
and
P.
Flores
, eds.,
Springer International Publishing
,
Switzerland
, pp.
261
268
.
36.
Bijlsma
,
B. G.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design of a Compact Gravity Equilibrator With an Unlimited Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061003
.
37.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
38.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Spiral Pulley Negative Stiffness Mechanism for Passive Energy Balancing
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
054502
.
39.
Franco
,
J. A.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2021
, “
Static Balancing of Four-Bar Compliant Mechanisms With Torsion Springs by Exerting Negative Stiffness Using Linear Spring at the Instant Center of Rotation
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031010
.
40.
Blad
,
T. W. A.
,
Van Ostayen
,
R. A. J.
, and
Tolou
,
N.
,
2021
, “
A Method for Tuning the Stiffness of Building Blocks for Statically Balanced Compliant Ortho-Planar Mechanisms
,”
Mech. Mach. Theory
,
162
, p.
104333
.
41.
Briot
,
S.
, and
Arakelian
,
V.
,
2015
, “
A New Energy-Free Gravity-Compensation Adaptive System for Balancing of 4-DOF Robot Manipulators With Variable Payloads
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
179
187
.
42.
Barajas
,
J. C.
, and
Paz
,
R. A.
,
2016
, “
Autobalancing a Generalized Gravity Equilibrator
,”
Int. J. Dyn. Control.
,
4
(
4
), pp.
515
526
.
43.
Chiang
,
W.-H.
, and
Chen
,
D.-Z.
,
2017
, “
Design of Planar Variable-Payload Balanced Articulated Manipulators With Actuated Linear Ground-Adjacent Adjustment
,”
Mech. Mach. Theory
,
109
, pp.
296
312
.
44.
Kim
,
J.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
G.
,
2020
, “
Compact Variable Gravity Compensation Mechanism With a Geometrically Optimized Lever for Maximizing Variable Ratio of Torque Generation
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2019
2026
.
45.
Chew
,
D. X.
,
Wood
,
K. L.
, and
Tan
,
U.
,
2019
, “
Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads
,”
ASME J. Mech. Des.
,
141
(
10
), p.
102302
.
46.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
.
47.
Takesue
,
N.
,
Ikematsu
,
T.
,
Murayama
,
H.
, and
Fujimoto
,
H.
,
2011
, “
Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)
,”
J. Rob. Mechatron.
,
23
(
2
), pp.
249
257
.
48.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
.
49.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
(
2
), pp.
151
158
.
50.
Van Dorsser
,
W.
,
Barents
,
R.
,
Wisse
,
B.
,
Schenk
,
M.
, and
Herder
,
J.
,
2008
, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
222
(
9
), pp.
1839
1846
.
51.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2020
, “
Optimization of the Energy Consumption Through Spring Balancing of Servo-Actuated Mechanisms
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012301
.
You do not currently have access to this content.