Abstract

Three-dimensional spatial packaging of interconnected systems with physical interactions (SPI2) design plays a vital role in the functionality, operation, energy usage, and life cycle of practically all engineered systems, from chips to ships. SPI2 design problems are highly nonlinear, involving tightly constrained component placement, governed by coupled physical phenomena (thermal, hydraulic, electromagnetic, etc.), and involve energy and material transfer through intricate geometric interconnects. While many aspects of engineering system design have advanced rapidly in the last few decades through breakthroughs in computational support, SPI2 design has largely resisted automation and in practice requires at least some human-executed design steps. SPI2 system reasoning and design decisions can quickly exceed human cognitive abilities at even moderate complexity levels, thwarting efforts to accelerate design cycles and tackle increasingly complex systems. Existing design methods treat pieces of the SPI2 problem separately without a fundamental systems approach, are sometimes inefficient to evaluate various possible designs, and present barriers to effective adoption in practice. This article explores a vision of a holistic SPI2 design approach needed to develop next-generation automated design methods capable of rapidly producing viable SPI2 design candidates. We review several technical domains related to holistic SPI2 design, discuss existing knowledge gaps and practical challenges, examine exciting opportunities at the intersection of multiple domains that can enable comprehensive exploration of SPI2 design spaces, and present one viable two-stage SPI2 design automation framework. Holistic SPI2 design opens up a new direction of high industrial and societal relevance for the design research community.

References

1.
University of Oxford
,
2010
, “
Best Way to Reduce Emissions is to Make Cars Smaller
,”
ScienceDaily, 18 January 2010
, https://www.sciencedaily.com/releases/2010/01/100116102818.htm
2.
Patel
,
P.
,
2020
, “
The Battery Design Smarts Behind Rolls Royce’s Ultrafast Electric Airplane
,” https://spectrum.ieee.org/energywise/energy/batteries-storage/the-battery-innovations-behind-rolls-royces-ultrafast-electric-airplane
3.
Joost
,
W. J.
,
2012
, “
Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering
,”
JOM
,
64
(
9
), pp.
1032
1038
.
4.
Ben Amar
,
A.
,
Kouki
,
A. B.
, and
Cao
,
H.
,
2015
, “
Power Approaches for Implantable Medical Devices
,”
Sensors
,
15
(
26580626
), pp.
28889
28914
.
5.
Bazaka
,
K.
, and
Jacob
,
M. V.
,
2013
, “
Implantable Devices: Issues and Challenges
,”
Electronics
,
2
(
1
), pp.
1
34
.
6.
Joung
,
Y.-H.
,
2013
, “
Development of Implantable Medical Devices: From an Engineering Perspective
,”
Int. Neurourol. J.
,
17
(
24143287
), pp.
98
106
.
7.
Zhao
,
J.
,
Ghannam
,
R.
,
Htet
,
K. O.
,
Liu
,
Y.
,
Law
,
M.-K.
,
Roy
,
V. A. L.
,
Michel
,
B.
,
Imran
,
M. A.
, and
Heidari
,
H.
,
2020
, “
Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review
,”
Adv. Healthcare Mater.
,
9
(
17
), p.
2000779
.
8.
Beosing
,
D.
,
2018
, “
Packaging Innovations for Medical Wearables
,” https://blog.samtec.com/post/packaging-innovations-for-medical-wearables/
9.
Hollingshead
,
T.
,
2019
, “
Compact Mechanisms Show Promise for Medical Devices
,”
Medical Design Briefs
.
11.
Nason
,
R. L.
, and
Heldmann
,
M. J.
,
1996
, “
Performance Characteristics of the Space Station Avionics Air Cooling Package
,”
International Conference On Environmental Systems
,
Monterey, CA
,
July 8–11
.
12.
Zhong
,
C.-Q.
,
Xu
,
Z.-Z.
, and
Teng
,
H.-F.
,
2019
, “
Multi-Module Satellite Component Assignment and Layout Optimization
,”
Appl. Soft Comput.
,
75
(
1
), pp.
148
161
.
13.
Fakoor
,
M.
,
Taghinezhad
,
M.
, and
Kosari
,
A.
,
2019
, “
Review of Method for Optimal Layout of Satellite Components
.
14.
Mehta
,
R.
, and
Hadley
,
M.
,
2014
, “
Vehicle Spaciousness and Packaging Efficiency
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
7
(
1
), pp.
105
112
.
15.
Howard
,
C.
,
2010
, “
Avionics and Military Electronics Thermal Management Challenges are Sparking Innovative Solutions to Keep These Systems Cool
,”
Military Aerospace Magazine
.
16.
Howard
,
C.
,
2011
, “
Power and Thermal Management Considerations Move to the Forefront of Aerospace and Defense Electronic Systems
,” https://www.militaryaerospace.com/trusted-computing/article/16716997/power-and-thermal-management-considerations-move-to-the-forefront-of-aerospace-and-defense-electronic-systems
17.
Bauer
,
J.
,
1977
, “
Leadless Carrier Applications for Avionics Packaging
,”
Computers in Aerospace Conference
,
Los Angeles, CA
,
Oct. 31–Nov. 2
.
18.
Poradish
,
F.
,
1984
, “
High Density Modular Avionics Packaging
,”
Proceedings of the Digital Avionics Systems Conference
,
Baltimore, MD
,
Dec. 3–6
.
19.
Kanz
,
J.
,
1985
, “
New Directions in Aerospace Packaging
,”
Proceedings of the 5th Computers in Aerospace Conference
,
Long Beach, CA
,
Oct. 21–23
.
20.
Seals
,
J.
,
1991
, “
Putting ten Pounds of Avionics in a One Pound Package (Can We Do It Again?)
,”
Proceedings of the 8th Computing in Aerospace Conference
,
Baltimore, MD
,
Oct. 21–24
.
21.
Mayer
,
R.
,
1977
, “
Vehicle/Manipulator/Packaging Interaction—A Synergistic Approach to Large Erectable Space System Design
,”
Proceedings of the 18th Structural Dynamics and Materials Conference
,
San Diego, CA
,
Mar. 21–23
.
22.
Huang
,
J.
, and
Gong
,
L.
,
2000
, “
A Knowledge Based Engineering Framework for Rapid Prototyping in Vehicle Packaging System
,”
Seoul 2000 FISITA World Automotive Congress
,
Seoul, South Korea
,
June 12–15
.
23.
Rajasekhar
,
M.
,
Perumal
,
J.
,
Rawte
,
S.
, and
Nepal
,
N.
,
2015
, “
Integration and Packaging for Vehicle Electrification
,”
Symposium on International Automotive Technology 2015
,
ARAI Campus, Pune, India
,
Jan. 21–24
, SAE International.
24.
Abramov
,
I. P.
,
Sharipov
,
R. K.
,
Skoog
,
A. I.
, and
Herber
,
N.
,
1994
, “
Space Suit Life Support System Packaging Factors
,”
International Conference On Environmental Systems
,
Seattle, WA
,
June 1–3
, SAE International.
25.
Howe
,
R.
,
Diep
,
C.
,
Barnett
,
B.
,
Rouen
,
M.
,
Thomas
,
G.
, and
Kobus
,
J.
,
2006
, “
Advanced Space Suit Portable Life Support Subsystem Packaging Design
,”
International Conference On Environmental Systems
,
Norfolk, VA
,
July 17–20
, SAE International.
26.
Bendsøe
,
M.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
27.
Haghighat
,
S.
,
Martins
,
J. R. R. A.
, and
Liu
,
H. H. T.
,
2012
, “
Aeroservoelastic Design Optimization of a Flexible Wing
,”
J. Aircr.
,
49
(
2
), pp.
432
443
.
28.
Liu
,
Q.
, and
Wang
,
C.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assem. Autom.
,
31
(
4
), pp.
363
368
.
29.
Shao
,
X. Y.
,
Chu
,
X. Z.
,
Qiu
,
H. B.
,
Gao
,
L.
, and
Yan
,
J.
,
2009
, “
An Expert System Using Rough Sets Theory for Aided Conceptual Design of Ship’s Engine Room Automation
,”
Expert Syst. Appl.
,
36
(
2, Part 2
), pp.
3223
3233
.
30.
López-Camacho
,
E.
,
Ochoa
,
G.
,
Terashima-Marín
,
H.
, and
Burke
,
E. K.
,
2013
, “
An Effective Heuristic for the Two-Dimensional Irregular Bin Packing Problem
,”
Ann. Oper. Res.
,
206
(
1
), pp.
241
264
.
31.
Tejani
,
G. G.
,
Savsani
,
V. J.
,
Patel
,
V. K.
, and
Savsani
,
P. V.
,
2018
, “
Size, Shape, and Topology Optimization of Planar and Space Trusses Using Mutation-Based Improved Metaheuristics
,”
J. Comput. Des. Eng.
,
5
(
2
), pp.
198
214
.
32.
Gulić
,
M.
, and
Jakobović
,
D.
,
2013
, “
Evolution of Vehicle Routing Problem Heuristics With Genetic Programming
,”
Proceedings of the 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
,
Opatija, Croatia
,
May 20–24
, pp.
988
992
.
33.
Beckert
,
B. A.
,
2013
, “
When Engineering Intuition Is Not Enough
,”
Altair Engineering Resources
, https://www.altair.com/resource/when-engineering-intuition-is-not-enough
34.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.
35.
Sharma
,
N.
, and
Kaur
,
M.
,
2014
, “A Survey of Vlsi Techniques for Power Optimization and Estimation of Optimization,” https://www.semanticscholar.org/paper/A-Survey-of-VLSI-Techniques-for-Power-Optimization-Sharma-Kaur/9599fe809651922bca976bf710c00d117e8ebc71
36.
Devadas
,
S.
, and
Malik
,
S.
,
1995
, “
A Survey of Optimization Techniques Targeting Low Power Vlsi Circuits
,”
Proceedings of the 32nd Design Automation Conference
,
San Francisco, CA
,
June 12–16
, pp.
242
247
.
37.
Whitney
,
D. E.
,
1996
, “
Why Mechanical Design Cannot be Like VLSI Design
,”
Res. Eng. Des.
,
8
(
3
), pp.
125
138
.
38.
Tang
,
X.
,
Tian
,
R.
, and
Wong
,
M.
,
2005
, “
Optimal Redistribution of White Space for Wire Length Minimization
,”
Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005
,
Shanghai, China
,
Jan. 21
, pp.
412
417
.
39.
Blouin
,
V.
,
Miao
,
Y.
,
Zhou
,
X.
, and
Fadel
,
G.
,
2004
, “
An Assessment of Configuration Design Methodologies
,”
Multidisciplinary Analysis Optimization Conferences
,
Albany, NY
,
Aug. 30–Sept. 1
.
40.
Liu
,
F.
,
Zhang
,
Y.
,
Zheng
,
C.
,
Qin
,
X.
, and
Eynard
,
B.
,
2019
, “
Survey of Configuration Design Approaches: A Focus on De-sign of Complex Industrial Manufacturing Systems
,”
Procedia CIRP
,
81
, pp.
340
345
.
41.
Wu
,
Y.
,
Li
,
W.
,
Goh
,
M.
, and
de Souza
,
R.
,
2010
, “
Three-Dimensional Bin Packing Problem With Variable Bin Height
,”
Eur. J. Oper. Res.
,
202
(
2
), pp.
347
355
.
42.
Szykman
,
S.
, and
Cagan
,
J.
,
1995
, “
A Simulated Annealing-Based Approach to Three-Dimensional Component Packing
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
308
314
.
43.
Lin
,
A. C.
, and
Chang
,
T. C.
,
1993
, “
An Integrated Approach to Automated Assembly Planning for Three-Dimensional Mechanical Products
,”
Int. J. Prod. Res.
,
31
(
5
), pp.
1201
1227
.
44.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
,
1998
, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
510
512
.
45.
Schäfer
,
M.
, and
Lengauer
,
T.
,
1999
, “
Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
330
336
.
46.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
,
2002
, “
A Survey of Computational Approaches to Three-Dimensional Layout Problems
,”
Comput. Aided Des.
,
34
(
8
), pp.
597
611
.
47.
Stoyan
,
Y.
, and
Yaskov
,
G.
,
2021
, “
Optimized Packing Unequal Spheres Into a Multiconnected Domain: Mixed-Integer Non-Linear Programming Approach
,”
Int. J. Comput. Math.: Comput. Syst. Theory
,
6
(
1
), pp.
94
111
.
48.
Romanova
,
T.
,
Litvinchev
,
I.
, and
Pankratov
,
A.
,
2020
, “
Packing Ellipsoids in an Optimized Cylinder
,”
Eur. J. Oper. Res.
,
285
(
2
), pp.
429
443
.
49.
Pankratov
,
A.
,
Romanova
,
T.
, and
Litvinchev
,
I.
,
2020
, “
Packing Oblique 3D Objects
.
Mathematics
,
8
(
7
), p.
1130
.
50.
Zhang
,
W.
,
Gao
,
Y.
,
Fang
,
L.
,
Shen
,
L.
, and
Xin
,
P.
,
2008
, “
Three-Dimensional Component Layout Modeling and Optimization Design
,”
Acta Aeronaut. Astronaut. Sin.
,
29
(
6
), pp.
1554
1562
.
51.
Romanova
,
T. E.
,
Litvinchev
,
I. S.
,
Grebennik
,
I.
,
Kovalenko
,
A. A.
,
Urniaieva
,
I.
, and
Shekhovtsov
,
S.
,
2019
, “Packing Convex 3D Objects with Special Geometric and Balancing Conditions,”
Advances in Intelligent Systems and Computing
,
Springer
,
Koh Samui, Thailand
.
52.
Sakti
,
A.
,
Zeidner
,
L.
,
Hadzic
,
T.
,
Rock
,
B. S.
, and
Quartarone
,
G.
,
2016
, “Constraint Programming Approach for Spatial Packaging Problem,”
Integration of AI and OR Techniques in Constraint Programming
,
C.-G.
Quimper
, ed.,
Springer International Publishing
,
Banff, Alberta (AB), Canada
, pp.
319
328
. https://dblp.org/rec/conf/cpaior/SaktiZHRQ16.html
53.
Dai
,
Z.
, and
Cha
,
J.
,
1994
, “
An Octree Method for Interference Detection in Computer Aided 3-d Packing
,”
Proceedings of the 20th Design Automation Conference: Volume 1—Dynamic Mechanical Systems; Geometric Modeling and Features; Concurrent Engineering of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Minneapolis, MN
,
Sept. 11–14
, pp.
29
33
.
54.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
,
1998
, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Comput.-Aided Des.
,
30
(
10
), pp.
781
790
.
55.
Romanova
,
T. E.
,
Stoyan
,
Y.
,
Pankratov
,
A.
,
Litvinchev
,
I. S.
, and
Marmolejo
,
J. A.
,
2019
, “
Decomposition Algorithm for Irregular Placement Problems
,”
2nd International Conference on Intelligent Computing and Optimization (ICO 2019)
,
Koh Samui, Thailand
,
Oct. 3–4
.
56.
Ma
,
Y.
,
Chen
,
Z.
,
Hu
,
W.
, and
Wang
,
W.
,
2018
, “
Packing Irregular Objects in 3D Space via Hybrid Optimization
,”
Comput. Graphics Forum
,
37
(
5
), pp.
49
59
.
57.
Liu
,
X.
,
Liu
,
J.-M.
,
Cao
,
A.-X.
, and
Yao
,
Z.-L.
,
2015
, “
Hape3d–A New Constructive Algorithm for the 3d Irregular Packing Problem
,”
Front. Inf. Technol. Electron. Eng.
,
16
(
5
), pp.
380
390
. doi.org/10.1631/FITEE.1400421
58.
Litvinchev
,
I.
,
Pankratov
,
A.
, and
Romanova
,
T.
,
2019
, “
3d Irregular Packing in an Optimized Cuboid Container
,”
IFAC-PapersOnLine
,
52
(
13
), pp.
2014
2019
.
59.
Dong
,
H.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2011
, “
Bi-Level Approach to Vehicle Component Layout With Shape Morphing
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041008
.
60.
Peddada
,
S. R. T.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2017
, “
Optimal Sensor Placement Methods for Active Power Electronic Systems
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE
,
Cleveland, OH
,
Aug. 6–9
.
61.
Peddada
,
S. R. T.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Sensor Placement Methods in Active High Power Density Electronic Systems with Experimental Validation
,”
ASME J. Mech. Des.
,
142
(
2
), p.
023501
.
62.
Yano
,
N.
,
Morinaga
,
T.
, and
Saito
,
T.
,
2008
, “
Packing Optimization for Cargo Containers
,”
Proceedings of the 2008 SICE Annual Conference
,
Tokyo, Japan
,
Aug. 20–22
, pp.
3479
3482
.
63.
Bansal
,
N.
,
Lodi
,
A.
, and
Sviridenko
,
M.
,
2005
, “
A Tale of Two Dimensional bin Packing
,”
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
,
Pittsburgh, PA
,
Oct. 23–25
, pp.
657
666
.
64.
Abdel-Malek
,
K. A.
,
Yeh
,
H. J.
, and
Maropis
,
N.
,
1998
, “
Determining Interference Between Pairs of Solids Defined Constructively in Computer Animation
,”
Eng. Comput.
,
14
(
1
), pp.
48
58
. doi.org/10.1007/BF01198974
65.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
. doi.org/10.1115/1.4030996
66.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
.
67.
Jain
,
S.
, and
Gea
,
H. C.
,
1998
, “
Two-Dimensional Packing Problems Using Genetic Algorithms
,”
Eng. Comput.
,
14
(
3
), pp.
206
213
.
68.
Ren
,
T.
,
Zhu
,
Z.-L.
,
Dimirovski
,
G.
,
Gao
,
Z.-H.
,
Sun
,
X.-H.
, and
Yu
,
H.
,
2014
, “
A New Pipe Routing Method for Aero-Engines Based on Genetic Algorithm
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
228
(
3
), pp.
424
434
.
69.
Sridhar
,
R.
,
Chandrasekaran
,
D.
,
Sriramya
,
C.
, and
Page
,
T.
,
2017
, “
Optimization of Heterogeneous Bin Packing Using Adaptive Genetic Algorithm
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
183
(
3
), p.
012026
.
70.
Rao
,
R. L.
, and
Iyengar
,
S. S.
,
1994
, “
Bin-Packing by Simulated Annealing
,”
27
(
5
), pp.
71
82
.
71.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three-Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
28
35
.
72.
Landon
,
M. D.
, and
Balling
,
R. J.
,
1994
, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
375
381
.
73.
Zhao
,
Y.
, and
Haas
,
C. T.
,
2019
, “
A 3D Irregular Packing Algorithm Using Point Cloud Data
,”
ASCE International Conference on Computing in Civil Engineering
,
Atlanta, GA
,
June 17–19
, pp.
201
208
.
74.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2006
, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
.
75.
Yin
,
S.
, and
Cagan
,
J.
,
2000
, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
102
108
.
76.
Qu
,
Y.
,
Jiang
,
D.
,
Gao
,
G.
, and
Huo
,
Y.
,
2016
, “
Pipe Routing Approach for Aircraft Engines Based on Ant Colony Optimization
,”
J. Aerosp. Eng.
,
29
(
3
), p.
04015057
.
77.
Schwarz
,
M.
,
Lenz
,
C.
,
García
,
G. M.
,
Koo
,
S.
,
Periyasamy
,
A. S.
,
Schreiber
,
M.
, and
Behnke
,
S.
,
2018
, “
Fast Object Learning and Dual-Arm Coordination for Cluttered Stowing, Picking, and Packing
,”
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
3347
3354
.
78.
Dong
,
S.
, and
Rodriguez
,
A.
,
2019
, “
Tactile-Based Insertion for Dense Box-Packing
,”
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
7953
7960
.
79.
Wang
,
F.
, and
Hauser
,
K.
,
2021
, “
Dense Robotic Packing of Irregular and Novel 3-d Objects
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
1
14
.
80.
She
,
Y.
,
Wang
,
S.
,
Dong
,
S.
,
Sunil
,
N.
,
Rodriguez
,
A.
, and
Adelson
,
E.
,
2021
, “
Cable Manipulation With a Tactile-Reactive Gripper
,”
Int. J. Rob. Res.
,
40
(
12–14
), pp.
1385
1401
.
81.
Sierla
,
S.
,
Azangoo
,
M.
, and
Vyatkin
,
V.
,
2020
, “
Generating an Industrial Process Graph From 3d Pipe Routing Information
,”
Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Vienna, Austria
,
Sept. 8–11
, Vol. 1, pp.
85
92
.
82.
Agafonov
,
A. A.
, and
Myasnikov
,
V. V.
,
2018
, “
Vehicle Routing Algorithms Based on a Route Reservation Approach
,”
J. Phys. Conf. Ser.
,
1096
, p.
012029
.
83.
Saleh
,
Y.
,
Tofigh
,
A.
, and
Zahra
,
A.
,
2014
, “
Transportation Routing in Urban Environments Using Updated Traffic Information Provided Through Vehicular Communications
,”
J. Transp. Syst. Eng. Inf. Technol.
,
14
(
5
), pp.
23
36
.
84.
Guirardello
,
R.
, and
Swaney
,
R. E.
,
2005
, “
Optimization of Process Plant Layout With Pipe Routing
,”
Comput. Chem. Eng.
,
30
(
1
), pp.
99
114
.
85.
Persson
,
L. G.
,
Santos
,
F. B.
,
Tavares
,
C. A. C.
,
de Andrade
,
A. E.
,
de Brito Alves
,
R. M.
,
do Nascimento
,
C. A. O.
, and
Biscaia
,
E. C.
,
2009
, “Methodology of Pipe and Equipment Layout for On-shore Oil and Gas Industry,”
Computer Aided Chemical Engineering
, Vol.
27
,
G. V.
Reklaitis
, ed.,
Elsevier
,
New York
, pp.
1845
1850
.
86.
Suchorab
,
P.
, and
Kowalski
,
D.
,
2018
, “
Methods of Routing and Sizing of Water Supply Networks
,”
E3S Web Conferences (2nd International Conference on Science and Technology Current Issues in Water Distribution and Treatment (CIWT))
,
Brenna, Poland
,
May 31–June 2
.
87.
Araneo
,
R.
,
Celozzi
,
S.
, and
Vergine
,
C.
,
2015
, “
Eco-sustainable Routing of Power Lines for the Connection of Renewable Energy Plants to the Italian High-Voltage Grid
,”
Int. J. Energy Environ. Eng.
,
6
(
1
), pp.
9
19
.
88.
Tisdale
,
J.
,
Kim
,
Z.
, and
Hedrick
,
J. K.
,
2009
, “
Autonomous UAV Path Planning and Estimation
,”
IEEE Robot. Autom. Mag.
,
16
(
2
), pp.
35
42
.
89.
Jan
,
G. E.
,
Yin Chang
,
K.
, and
Parberry
,
I.
,
2008
, “
Optimal Path Planning for Mobile Robot Navigation
,”
IEEE/ASME Trans. Mechatron.
,
13
(
4
), pp.
451
460
.
90.
Koh
,
C.-K.
, and
Madden
,
P. H.
,
2000
, “
Manhattan or Non-Manhattan? A Study of Alternative Vlsi Routing Architectures
,”
Proceedings of the 10th Great Lakes Symposium on VLSI, GLSVLSI ‘00, Association for Computing Machinery
,
Chicago, IL
,
Mar. 2–4
, pp.
47
52
.
91.
Liao
,
H.
,
Zhang
,
W.
,
Dong
,
X.
,
Poczos
,
B.
,
Shimada
,
K.
, and
Burak Kara
,
L.
,
2019
, “
A Deep Reinforcement Learning Approach for Global Routing
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061701
.
92.
Harwood
,
S.
,
Gambella
,
C.
,
Trenev
,
D.
,
Simonetto
,
A.
,
Bernal
,
D.
, and
Greenberg
,
D.
,
2021
, “
Formulating and Solving Routing Problems on Quantum Computers
,”
IEEE Trans. Quantum Eng.
,
2
(
1
), pp.
1
17
.
93.
Nosrati
,
N.
, and
Shahhoseini
,
H. S.
,
2017
, “
G-cara: A Global Congestion-Aware Routing Algorithm for Traffic Management in 3d Networks-on-Chip
,”
Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE)
,
Tehran, Iran
,
May 2–4
, pp.
2188
2193
.
94.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
95.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
96.
Mitsuta
,
T.
,
Kobayashi
,
Y.
,
Wada
,
Y.
,
Kiguchi
,
T.
, and
Yoshinaga
,
T.
,
1987
, “
A Knowledge-Based Approach to Routing Problems in Industrial Plant Design
,”
Proceedings of the 6th International Workshop Vol. 1 on Expert Systems & Their Applications, Agence de l’Informatique
, pp.
237
256
.
97.
Wang
,
N.
,
Wan
,
J.
,
Gomez-Levi
,
G.
,
Kiridena
,
V.
,
Sieczka
,
S.
, and
Pulliam
,
D.
,
2007
, “
An Integrated Design and Appraisal System for Vehicle Interior Packaging
,”
SAE World Congress & Exhibition
,
Detroit, MI
,
Apr. 16
.
98.
Lee
,
C. Y.
,
1961
, “
An Algorithm for Path Connections and Its Applications
,”
IRE Trans. Electron. Comput.
,
EC-10
(
3
), pp.
346
365
.
99.
Stanczak
,
M.
,
Pralet
,
C.
,
Vidal
,
V.
, and
Baudoui
,
V.
,
2020
, “
Optimal Pipe Routing Techniques in an Obstacle-Free 3D Space
,”
ICORES.
https://hal.archives-ouvertes.fr/hal-02865302
100.
Ito
,
T
,
1999
, “
A Genetic Algorithm Approach to Piping Route Path Planning
,”
J. Intell. Manuf.
,
10
(
1
), pp.
103
114
.
101.
Niu
,
Y.
,
Niu
,
W.
, and
Gao
,
W.
,
2017
, “
Branch Pipe Routing Method Based on a 3D Network and Improved Genetic Algorithm
,”
Proceedings of the International Conference ICCAE
,
Taipei, Taiwan
,
Nov. 4–6
.
102.
Dorigo
,
M.
, and
Gambardella
,
L. M.
,
1997
, “
Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem
,”
IEEE Trans. Evol. Comput.
,
1
(
1
), pp.
53
66
.
103.
Jiang
,
W.-Y.
,
Lin
,
Y.
,
Chen
,
M.
, and
Yu
,
Y.-Y.
,
2015
, “
A Co-evolutionary Improved Multi-ant Colony Optimization for Ship Multiple and Branch Pipe Route Design
,”
Ocean Eng.
,
102
(
1
), pp.
63
70
.
104.
Qu
,
Y.
,
Jiang
,
D.
, and
Yang
,
Q.
,
2018
, “
Branch Pipe Routing Based on 3D Connection Graph and Concurrent Ant Colony Optimization Algorithm
,”
J. Intell. Manuf.
,
29
(
7
), pp.
1647
1657
.
105.
Jiang
,
W.-Y.
,
Lin
,
Y.
,
Chen
,
M.
, and
Yu
,
Y.-Y.
,
2014
, “
An Ant Colony Optimization-Genetic Algorithm Approach for Ship Pipe Route Design
,”
Int. Shipbuild. Prog.
,
61
(
3–4
), pp.
163
183
.
106.
Reil
,
S.
,
Bortfeldt
,
A.
, and
Mönch
,
L.
,
2018
, “
Heuristics for Vehicle Routing Problems With Backhauls, Time Windows, and 3d Loading Constraints
,”
Eur. J. Oper. Res.
,
266
(
3
), pp.
877
894
.
107.
Calixto
,
E. E. S.
,
Bordeira
,
P. G.
,
Calazans
,
H. T.
,
Tavares
,
C. A. C.
,
Rodriguez
,
M. T. D.
,
de Brito Alves
,
R. M.
,
do Nascimento
,
C. A. O.
, and
Biscaia
,
E. C.
,
2009
, “Plant Design Project Automation Using an Automatic Pipe Routing Routine,”
Computer Aided Chemical Engineering
, Vol.
27
,
G. V.
Reklaitis
, ed.,
Elsevier
,
New York
, pp.
807
812
.
108.
Park
,
J.-H.
, and
Storch
,
R. L.
,
2002
, “
Pipe-routing Algorithm Development: Case Study of a Ship Engine Room Design
,”
Expert Syst. Appl.
,
23
(
3
), pp.
299
309
.
109.
Biedermann
,
M.
,
Beutler
,
P.
, and
Meboldt
,
M.
,
2022
, “
Routing Multiple Flow Channels for Additive Manufactured Parts Using Iterative Cable Simulation
,”
Addit. Manuf.
,
56
(
1
), p.
102891
.
110.
Cao
,
P.
,
Fan
,
Z.
,
Gao
,
R. X.
, and
Tang
,
J.
,
2018
, “
Design for Additive Manufacturing: Optimization of Piping Network in Compact System With Enhanced Path-Finding Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081013
.
111.
Van der Velden
,
C.
,
Bil
,
C.
,
Yu
,
X.
, and
Smith
,
A.
,
2007
, “
An Intelligent System for Automatic Layout Routing in Aerospace Design
,”
Innov. Syst. Softw. Eng.
,
3
(
2
), pp.
117
128
.
112.
Zhou
,
Q.
, and
Lv
,
Y.
,
2020
, “
Research Based on Lee Algorithm and Genetic Algorithm of the Automatic External Pipe Routing of the Aircraft Engine
,”
Int. J. Mech. Eng. Appl.
,
8
(
1
), p.
40
.
113.
Rourke
,
P.
, and
Merritt
,
L.
,
2007
, “
Real-Time Semiautomatic 3D Pipe Routing
,”
J. Ship. Prod.
,
23
(
03
), pp.
180
184
.
114.
Kim
,
S.-H.
,
Ruy
,
W.-S.
, and
Jang
,
B. S.
,
2013
, “
The Development of a Practical Pipe Auto-routing System in a Shipbuilding CAD Environment Using Network Optimization
,”
Int. J. Nav. Archit. Ocean Eng.
,
3
(
3
), pp.
468
477
.
115.
Kim
,
S.
,
Choi
,
T.
,
Kim
,
S.
,
Kwon
,
T.
,
Lee
,
T. H.
, and
Lee
,
K.
,
2021
, “
Sequential Graph-Based Routing Algorithm for Electrical Harnesses, Tubes, and Hoses in a Commercial Vehicle
,”
J. Intell. Manuf.
,
32
(
4
), pp.
917
933
.
116.
Liu
,
C.
,
2018
, “
Optimal Design of High-Rise Building Wiring Based on Ant Colony Optimization
,”
Clust. Comput.
,
22
(
S2
), pp.
1
8
.
117.
Han
,
L.
,
Zhang
,
T.
, and
Wang
,
Z.
,
2014
, “
The Design and Development of Indoor 3d Routing System
,”
J. Softw.
,
9
(
5
), pp.
1223
1228
.
118.
Betz
,
V.
, and
Rose
,
J.
,
1997
, “VPR: A New Packing, Placement and Routing Tool for Fpga Research,”
Field-Programmable Logic and Applications
,
W.
Luk
,
P. Y. K.
Cheung
, and
M.
Glesner
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
213
222
.
119.
Neumaier
,
M.
,
Kranemann
,
S.
,
Kazmeier
,
B.
, and
Rudolph
,
S.
,
2022
, “
Automated Piping in an Airbus a320 Landing Gear Bay Using Graph-Based Design Languages
,”
Aerospace
,
9
(
3
), p.
140
.
120.
Souissi
,
O.
,
Benatitallah
,
R.
,
Duvivier
,
D.
,
Artiba
,
A.
,
Belanger
,
N.
, and
Feyzeau
,
P.
,
2013
, “
Path Planning: A 2013 Survey
,”
Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM)
,
Agdal, Morocco
,
Oct. 28–30
, pp.
1
8
.
121.
Ma
,
H.
,
Koenig
,
S.
,
Ayanian
,
N.
,
Cohen
,
L.
,
Hönig
,
W.
,
Kumar
,
T. K. S.
,
Uras
,
T.
,
Xu
,
H.
,
Tovey
,
C. A.
, and
Sharon
,
G.
,
2017
, “Overview: Generalizations of Multi-agent Path Finding to Real-World Scenarios”,
Artificial Intelligence ArXiv (cs.AI)
, pp.
1
6
. https://arxiv.org/abs/1702.05515
122.
Belov
,
G.
,
Czauderna
,
T.
,
Dzaferovic
,
A.
,
Banda
,
M. G. D. L.
,
Wybrow
,
M.
, and
Wallace
,
M.
,
2017
, “
An Optimization Model for 3D Pipe Routing with Flexibility Constraints
,”
International Conference on Principles and Practice of Constraint Programming (CP 2017)
,
Melbourne, VIC, Australia
,
Aug. 28–Sept. 1
.
123.
Belov
,
G.
,
Cohen
,
L.
,
Banda
,
M. G. D. L.
,
Harabor
,
D. D.
,
Koenig
,
S.
, and
Wei
,
X.
,
2019
, “
Position Paper: From Multi-agent Pathfinding to Pipe Routing
,”
Artificial Intelligence ArXiv (cs.AI)
,
1
(
1
), pp.
1
6
. https://arxiv.org/abs/1905.08412
124.
Belov
,
G.
,
Du
,
W.
,
Banda
,
M. G. D. L.
,
Harabor
,
D. D.
,
Koenig
,
S.
, and
Wei
,
X.
,
2020
, “
From Multi-agent Pathfinding to 3D Pipe Routing
,”
SOCS.
https://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18513
125.
Čáp
,
M.
,
Novák
,
P.
,
Kleiner
,
A.
, and
Selecký
,
M.
,
2015
, “
Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
3
), pp.
835
849
.
126.
Velagapudi
,
P.
,
Sycara
,
K. P.
, and
Scerri
,
P.
,
2010
, “
Decentralized Prioritized Planning in Large Multirobot Teams
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4603
4609
.
127.
Huang
,
T.
,
Dilkina
,
B.
, and
Koenig
,
S.
,
2021
, “
Learning to Resolve Conflicts for Multi-agent Path Finding With Conflict-Based Search
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Virtual, Online
,
Feb. 2–9
.
128.
Ma
,
H.
,
Harabor
,
D.
,
Stuckey
,
P. J.
,
Li
,
J.
, and
Koenig
,
S.
,
2019
, “
Searching With Consistent Prioritization for Multi-Agent Path Finding
,”
Proc. AAAI Conf. Artif. Intell.
,
33
(
01
), pp.
7643
7650
.
129.
CAD—Piping and Plant Design Tools, http://www.tenlinks.com/cad/products/piping.htm
130.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
131.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
081401
. 111401, 10.1115/1.4040624
132.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.
133.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2013
, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
11
), p.
111010
.
134.
Yu
,
M.
,
Ruan
,
S.
,
Wang
,
X.
,
Li
,
Z.
, and
Shen
,
C.
,
2019
, “
Topology Optimization of Thermal-Fluid Problem Using the MMC-Based Approach
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
151
165
.
135.
de Kruijf
,
N.
,
Zhou
,
S.
,
Li
,
Q.
, and
Mai
,
Y.-W.
,
2007
, “
Topological Design of Structures and Composite Materials With Multiobjectives
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7092
7109
.
136.
Takezawa
,
A.
,
Yoon
,
G. H.
,
Jeong
,
S. H.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2014
, “
Structural Topology Optimization With Strength and Heat Conduction Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
276
(
1
), pp.
341
361
.
137.
Kang
,
Z.
, and
James
,
K. A.
,
2019
, “
Multimaterial Topology Design for Optimal Elastic and Thermal Response With Material-Specific Temperature Constraints
,”
Int. J. Numer. Methods Eng.
,
117
(
10
), pp.
1019
1037
.
138.
James
,
K.
,
Kennedy
,
G.
, and
Martins
,
J.
,
2014
, “
Concurrent Aerostructural Topology Optimization of a Wing Box
,”
Comput. Struct.
,
134
, pp.
1
17
.
139.
Dunning
,
P.
,
Stanford
,
B.
, and
Kim
,
H.
,
2015
, “
Coupled Aerostructural Topology Optimization Using a Level Set Method for 3d Aircraft Wings
,”
Struct. Multidiscipl. Optim.
,
51
(
5
), pp.
1113
1132
.
140.
Oktay
,
E.
,
Akay
,
H.
, and
Merttopcuoglu
,
O.
,
2011
, “
Parallelized Structural Topology Optimization and CFD Coupling for Design of Aircraft Wing Structures
,”
Comput. Fluids
,
49
(
1
), pp.
141
145
.
141.
Zhu
,
J.
,
Zhang
,
W.
,
Beckers
,
P.
,
Chen
,
Y.
, and
Guo
,
Z.
,
2008
, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique
,”
Struct. Multidiscipl. Optim.
,
36
(
1
), pp.
29
41
.
142.
Zhu
,
J.-H.
,
Guo
,
W.-J.
,
Zhang
,
W.-H.
, and
Liu
,
T.
,
2017
, “
Integrated Layout and Topology Optimization Design of Multi-frame and Multi-component Fuselage Structure Systems
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
21
45
.
143.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-Mapping Methods for Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1597
1638
.
144.
Du
,
B.
,
Yao
,
W.
,
Zhao
,
Y.
, and
Chen
,
X.
,
2019
, “
A Moving Morphable Voids Approach for Topology Optimization With Closed B-Splines
,”
ASME J. Mech. Des.
,
141
(
8
), p.
081041
.
145.
Xie
,
X.
,
Wang
,
S.
,
Xu
,
M.
,
Jiang
,
N.
, and
Wang
,
Y.
,
2020
, “
A Hierarchical Spline Based Isogeometric Topology Optimization Using Moving Morphable Components
,”
Comput. Methods Appl. Mech. Eng.
,
360
(
1
), p.
112696
.
146.
Qian
,
X.
,
2013
, “
Topology Optimization in B-Spline Space
,”
Comput. Methods Appl. Mech. Eng.
,
265
(
1
), pp.
15
35
.
147.
Zhang
,
J.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
, and
Xia
,
L.
,
2012
, “
Integrated Layout Design of Multi-component Systems Using XFEM and Analytical Sensitivity Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
245–246
(
1
), pp.
75
89
.
148.
Zhou
,
M.
, and
Wang
,
M. Y.
,
2013
, “
Engineering Feature Design for Level Set Based Structural Optimization
,”
Comput.-Aided Des.
,
45
(
12
), pp.
1524
1537
.
149.
Liu
,
T.
,
Wang
,
S.
,
Li
,
B.
, and
Gao
,
L.
,
2014
, “
A Level-Set-Based Topology and Shape Optimization Method for Continuum Structure Under Geometric Constraints
,”
Struct. Multidiscipl. Optim.
,
50
(
2
), pp.
253
273
.
150.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
53
(
1
), pp.
175
192
.
151.
Zhang
,
X. S.
,
Paulino
,
G. H.
, and
Ramos
,
A. S.
,
2018
, “
Multi-material Topology Optimization With Multiple Volume Constraints: A General Approach Applied to Ground Structures With Material Nonlinearity
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
161
182
.
152.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
(
1
), pp.
306
327
.
153.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1173
1190
.
154.
Norato
,
J.
,
Haber
,
R.
,
Tortorelli
,
D.
, and
Bendsøe
,
M. P.
,
2004
, “
A Geometry Projection Method for Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2289
2312
.
155.
Zhang
,
W.
,
Xia
,
L.
,
Zhu
,
J.
, and
Zhang
,
Q.
,
2011
, “
Some Recent Advances in the Integrated Layout Design of Multicomponent Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
104503
.
156.
Zhang
,
W.
, and
Zhang
,
Q.
,
2009
, “
Finite-Circle Method for Component Approximation and Packing Design Optimization
,”
Eng. Optim.
,
41
(
10
), pp.
971
987
.
157.
Zhu
,
J.-H.
,
Gao
,
H.-H.
,
Zhang
,
W.-H.
, and
Zhou
,
Y.
,
2015
, “
A Multi-point Constraints Based Integrated Layout and Topology Optimization Design of Multi-component Systems
,”
Struct. Multidiscipl. Optim.
,
51
(
2
), pp.
397
407
.
158.
Zhu
,
B.
,
Chen
,
Q.
,
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081403
.
159.
Peddada
,
S. R. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
A Novel Two-Stage Design Framework for 2D Spatial Packing of Interconnected Components
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 11B, Proceedings of the 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p. V11BT11A032.
160.
Peddada
,
S. R. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
A Novel Two-Stage Design Framework for Two-Dimensional Spatial Packing of Interconnected Components
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031706
.
161.
Peddada
,
S. R. T.
,
2021
. “A two-Stage Design Framework for Optimal Spatial Packaging of Fluid-Thermal Systems.” Ph.D. dissertation,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
162.
Bello
,
W. B.
,
Peddada
,
S. R. T.
,
Bhattacharyya
,
A.
,
Jennings
,
M.
,
Katragadda
,
S.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2022
, “
Underhood Spatial Packing and Routing of an Automotive Fuel Cell System (AFCS) Using 2d Geometric Projection
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
.
163.
Jessee
,
A.
,
Peddada
,
S. R. T.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
.
164.
Bhattacharyya
,
A.
,
Peddada
,
S. R. T.
,
Bello
,
W. B.
,
Zeidner
,
L. E.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2022
, “
Simultaneous 3d Component Packing and Routing Optimization Using Geometric Projection
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
.
165.
Chen
,
J.
, and
Ilieş
,
H. T.
,
2020
, “
Maximal Disjoint Ball Decompositions for Shape Modeling and Analysis
,”
Comput.-Aided Des.
,
126
(
1
), p.
102850
.
166.
Kobayashi
,
K.
,
1994
, “
On the Spatial Graph
,”
Kodai Math. J.
,
17
(
3
), pp.
511
517
.
167.
Matthias
,
P.
,
2020
, “Metric Space (Wikipedia).” https://en.wikipedia.org/wiki/Metric_space, Accessed August 25, 2020.
168.
Peddada
,
S. R. T.
,
Dunfield
,
N. M.
,
Zeidner
,
L. E.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
Systematic Enumeration and Identification of Unique Spatial Topologies of 3D Systems Using Spatial Graph Representations
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 3A: 47th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p. V03AT03A042.
169.
Install
,
M.
,
Rowland
,
T.
and
Weisstein
,
E. W.
,
2022
, “Embedding.” https://mathworld.wolfram.com/Embedding.html, Accessed April 07, 2022
170.
Murasugi
,
K.
,
1996
,
Knot Theory and Its Applications
, 1st ed.,
Birkhäuser
,
Boston, MA
, pp.
197
216
.
171.
Flapan
,
E.
,
He
,
A.
, and
Wong
,
H.
,
2019
, “
Topological Descriptions of Protein Folding
,”
Proc. Natl. Acad. Sci.
,
116
(
19
), pp.
9360
9369
.
172.
Mavrogiannis
,
C. I.
, and
Knepper
,
R. A.
,
2018
, “
Multi-agent Path Topology in Support of Socially Competent Navigation Planning
,”
Int. J. Rob. Res.
,
38
(
2–3
), pp.
338
356
.
173.
Mavrogiannis
,
C. I.
, and
Knepper
,
R. A.
,
2020
, “Decentralized Multi-agent Navigation Planning With Braids,”
Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics
,
K.
Goldberg
,
P.
Abbeel
,
K.
Bekris
, and
L.
Miller
, eds.,
Springer International Publishing
,
Cham
, pp.
880
895
.
174.
Brennan
,
J.
,
2019
, “Homotopy (Wikipedia),” https://en.wikipedia.org/wiki/Homotopy. Accessed April 5, 2019.
175.
Hershberger
,
J.
, and
Snoeyink
,
J.
,
1991
, “Computing Minimum Length Paths of a Given Homotopy Class,”
Algorithms and Data Structures
, Vol.
519
,
F.
Dehne
,
J.-R.
Sack
, and
N.
Santoro
, eds.,
Springer
,
Berlin Heidelberg
, pp.
331
342
.
176.
Schmitzberger
,
E.
,
Bouchet
,
J. L.
,
Dufaut
,
M.
,
Wolf
,
D.
, and
Husson
,
R.
,
2002
, “
Capture of Homotopy Classes With Probabilistic Road map
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol. 3, pp.
2317
2322
.
177.
Demyen
,
D.
, and
Buro
,
M.
,
2006
, “
Efficient Triangulation-Based Pathfinding
,”
Proceedings of the 21st National Conference on Artificial Intelligence—Volume 1, AAAI’06
,
AAAI Press
,
pp.
942
947
.
178.
Bhattacharya
,
S.
,
Likhachev
,
M.
, and
Kumar
,
V.
,
2012
, “
Search-Based Path Planning With Homotopy Class Constraints in 3d
,”
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12
,
AAAI Press
, pp.
2097
2099
.
179.
Herber
,
D. R.
,
Guo
,
T.
, and
Allison
,
J. T.
,
2017
, “
Enumeration of Architectures With Perfect Matchings
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051403
.
180.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
.
181.
Cramer
,
E.
,
Dennis
,
J.
,
Frank
,
P.
,
Lewis
,
R.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
182.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.
183.
Peddada
,
S. R. T.
,
Zeidner
,
L. E.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
An Introduction to 3D SPI2 (Spatial Packaging of Interconnected Systems With Physics Interactions) Design Problems: A Review of Related Work, Existing Gaps, Challenges, and Opportunities
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 3B: 47th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p. V03BT03A034.
184.
Peddada
,
S. R. T.
,
Rodriguez
,
S. B.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
Automated Layout Generation Methods for 2D Spatial Packing
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 11B: 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p. V11BT11A013.
185.
Herber
,
D. R.
,
Guo
,
T.
, and
Allison
,
J. T.
,
2016
, “
Enumeration of Architectures With Perfect Matchings
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences
,
Charlotte, NC
,
Aug. 21–24
, p. V02AT03A005.
186.
Herber
,
D. R.
,
2020
, “
Enhancements to the Perfect Matching Approach for Graph Enumeration-Based Engineering Challenges
,”
ASME 2020 International Design Engineering Technical Conferences
, Paper No. DETC2020-22774.
You do not currently have access to this content.