Abstract

Reliability sensitivity analysis is important to measure how uncertainties influence the reliability of mechanical systems. This study aims to propose an efficient computational method for reliability sensitivity analysis with high accuracy and efficiency. In this study, coordinates of some points on the limit state function are first calculated through Levenberg–Marquardt (LM) iterative algorithm, and the partial derivative of system response relative to uncertain variables is obtained. The coordinate mapping relation and the partial derivative mapping relation are then established by radial basis function neural network (RBFNN) according to these points calculated by the LM iterative algorithm. Following that, the failure samples can be screened out from the Monte Carlo simulation (MCS) sample set by the well-established mapping relations. Finally, the reliability sensitivity is calculated by these failure samples and kernel function, and the failure probability can be obtained correspondingly. Two benchmark examples and an application of industrial robot are used to demonstrate the effectiveness of the proposed method.

References

1.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2021
, “
Time-Dependent System Kinematic Reliability Analysis for Robotic Manipulators
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041704
.
2.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2021
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
.
3.
Meng
,
Z.
,
Guo
,
L.
, and
Wang
,
X.
,
2022
, “
A General Fidelity Transformation Framework for Reliability-Based Design Optimization With Arbitrary Precision
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
16
.
4.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Model.
,
82
, pp.
189
216
.
5.
Zhang
,
D.
,
Liang
,
Y.
,
Cao
,
L.
,
Liu
,
J.
, and
Han
,
X.
,
2022
, “
Evidence-Theory-Based Reliability Analysis Through Kriging Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031701
.
6.
Yang
,
M.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Hybrid Adaptive Kriging-Based Single Loop Approach for Complex Reliability-Based Design Optimization Problems
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107736
.
7.
Wang
,
L.
,
Li
,
G.
,
Lu
,
Z.
, and
Feng
,
K.
,
2021
, “
Local Sensitivity Analysis of Failure Possibility and Its Universal Solution by Fuzzy Simulation
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
219
238
.
8.
Huang
,
X.
, and
Zhang
,
Y.
,
2013
, “
Reliability–Sensitivity Analysis Using Dimension Reduction Methods and Saddlepoint Approximations
,”
Int. J. Numer. Methods Eng.
,
93
(
8
), pp.
857
886
.
9.
Yun
,
W.
,
Lu
,
Z.
,
He
,
P.
,
Dai
,
Y.
, and
Jiang
,
X.
,
2019
, “
An Efficient Method for Estimating the Parameter Global Reliability Sensitivity Analysis by Innovative Single-Loop Process and Embedded Kriging Model
,”
Mech. Syst. Signal Process.
,
133
, p.
106288
.
10.
Zhang
,
X.
,
Liu
,
J.
,
Yan
,
Y.
, and
Pandey
,
M.
,
2019
, “
An Effective Approach for Reliability-Based Sensitivity Analysis With the Principle of Maximum Entropy and Fractional Moments
,”
Entropy
,
21
(
7
), p.
649
.
11.
MiarNaeimi
,
F.
,
Azizyan
,
G.
, and
Rashki
,
M.
,
2019
, “
Reliability Sensitivity Analysis Method Based on Subset Simulation Hybrid Techniques
,”
Appl. Math. Model.
,
75
, pp.
607
626
.
12.
Melchers
,
R.
, and
Ahammed
,
M.
,
2004
, “
A Fast Approximate Method for Parameter Sensitivity Estimation in Monte Carlo Structural Reliability
,”
Comput. Struct.
,
82
(
1
), pp.
55
61
.
13.
Cho
,
H.
,
Choi
,
K.
,
Lee
,
I.
, and
Lamb
,
D.
,
2016
, “
Design Sensitivity Method for Sampling-Based RBDO With Varying Standard Deviation
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011405
.
14.
Lee
,
I.
,
Choi
,
K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
.
15.
Yun
,
W.
,
Lu
,
Z.
, and
Feng
,
K.
,
2022
, “
Enhanced Adaptive Kriging Combined Adaptive Radial-Based Importance Sampling Method for Reliability Analysis
,”
AIAA J.
,
60
(
6
), pp.
1
13
.
16.
Li
,
H. S.
,
Wang
,
T.
,
Yuan
,
J. Y.
, and
Zhang
,
H.
,
2019
, “
A Sampling-Based Method for High-Dimensional Time-Variant Reliability Analysis
,”
Mech. Syst. Signal Process.
,
126
(
1
), pp.
505
520
.
17.
Meng
,
Z.
,
Zhang
,
D.
,
Liu
,
Z.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
.
18.
Xiao
,
S.
, and
Lu
,
Z.
,
2017
, “
Structural Reliability Sensitivity Analysis Based on Classification of Model Output
,”
Aerosp. Sci. Technol.
,
71
, pp.
52
61
.
19.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscipl. Optim.
,
51
(
1
), pp.
1
21
.
20.
Hu
,
Z.
, and
Du
,
X.
,
2019
, “
Efficient Reliability-Based Design With Second Order Approximations
,”
Eng. Optim.
,
51
(
1
), pp.
101
119
.
21.
Zhang
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
Y.
,
2011
, “
Reliability Sensitivity Based on First-Order Reliability Method
,”
Proc. Inst. Mech. Eng. C
,
225
(
9
), pp.
2189
2197
.
22.
He
,
W.
,
Li
,
G.
,
Hao
,
P.
, and
Zeng
,
Y.
,
2019
, “
Maximum Entropy Method-Based Reliability Analysis With Correlated Input Variables Via Hybrid Dimension-Reduction Method
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101405
.
23.
Li
,
X.
,
Chen
,
G.
,
Cui
,
H.
, and
Yang
,
D.
,
2021
, “
Direct Probability Integral Method for Static and Dynamic Reliability Analysis of Structures With Complicated Performance Functions
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113583
.
24.
Xu
,
J.
, and
Kong
,
F.
,
2019
, “
Adaptive Scaled Unscented Transformation for Highly Efficient Structural Reliability Analysis by Maximum Entropy Method
,”
Struct. Saf.
,
76
, pp.
123
134
.
25.
Dang
,
C.
, and
Xu
,
J.
,
2019
, “
Novel Algorithm for Reconstruction of a Distribution by Fitting Its First-Four Statistical Moments
,”
Appl. Math. Model.
,
71
, pp.
505
524
.
26.
Zhang
,
D.
,
Han
,
Z.
,
Wang
,
F.
, and
Han
,
X.
,
2021
, “
Proficiency of Statistical Moment-Based Methods for Analysis of Positional Accuracy Reliability of Industrial Robots
,”
Int. J. Mech. Mater. Des.
,
17
(
2
), pp.
403
418
.
27.
Qian
,
H. M.
,
Huang
,
T.
, and
Huang
,
H. Z.
,
2021
, “
A Single-Loop Strategy for Time-Variant System Reliability Analysis Under Multiple Failure Modes
,”
Mech. Syst. Signal Process.
,
148
, p.
107159
.
28.
Yang
,
M.
,
Zhang
,
D.
,
Wang
,
F.
, and
Han
,
X.
,
2022
, “
Efficient Local Adaptive Kriging Approximation Method With Single-Loop Strategy for Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
390
, p.
114462
.
29.
He
,
W.
,
Zeng
,
Y.
, and
Li
,
G.
,
2020
, “
An Adaptive Polynomial Chaos Expansion for High-Dimensional Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
2051
2067
.
30.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2021
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
887
900
.
31.
Ma
,
Y. Z.
,
Li
,
H. S.
, and
Zhao
,
Z. Z.
,
2021
, “
Reliability Sensitivity Analysis of Thermal Protection System
,”
Struct. Multidiscipl. Optim.
,
64
(
3
), pp.
1199
1220
.
32.
Sounak
,
K.
,
Roy
,
A.
, and
Subrata
,
C.
,
2021
, “
A Generalized Moving Least Square-Based Response Surface Method for Efficient Reliability Analysis of Structure
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1085
1097
.
33.
Zhang
,
D.
,
Zhou
,
P.
,
Jiang
,
C.
,
Yang
,
M.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Stochastic Process Discretization Method Combing Active Learning Kriging Model for Efficient Time-Variant Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113990
.
34.
Deng
,
J.
,
Gu
,
D.
,
Li
,
X.
, and
Yue
,
Z. Q.
,
2005
, “
Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network
,”
Struct. Saf.
,
27
(
1
), pp.
25
48
.
35.
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A new Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.
36.
Shi
,
Y.
,
Lu
,
Z.
,
Chen
,
S.
, and
Xu
,
L.
,
2018
, “
A Reliability Analysis Method Based on Analytical Expressions of the First Four Moments of the Surrogate Model of the Performance Function
,”
Mech. Syst. Signal Process.
,
111
, pp.
47
67
.
37.
Fan
,
J.
, and
Zeng
,
J.
,
2013
, “
A Levenberg–Marquardt Algorithm With Correction for Singular System of Nonlinear Equations
,”
Appl. Math. Comput.
,
219
(
17
), pp.
9438
9446
.
38.
Xiang
,
Z.
,
Bao
,
Y.
,
Tang
,
Z.
, and
Li
,
H.
,
2020
, “
Deep Reinforcement Learning-Based Sampling Method for Structural Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106901
.
39.
Rahman
,
S.
,
2009
, “
Stochastic Sensitivity Analysis by Dimensional Decomposition and Score Functions
,”
Probabilistic Eng. Mech.
,
24
(
3
), pp.
278
287
.
40.
Hou
,
T.
,
Nuyens
,
D.
,
Roels
,
S.
, and
Janssen
,
H.
,
2019
, “
Quasi-Monte Carlo Based Uncertainty Analysis: Sampling Efficiency and Error Estimation in Engineering Applications
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106549
.
41.
Chen
,
J. B.
, and
Li
,
J.
,
2005
, “
Dynamic Response and Reliability Analysis of Non-Linear Stochastic Structures
,”
Probabilistic Eng. Mech.
,
20
(
1
), pp.
33
44
.
42.
Mishra
,
P. K.
,
Nath
,
S. K.
,
Sen
,
M. K.
, and
Fasshauer
,
G. E.
,
2018
, “
Hybrid Gaussian-Cubic Radial Basis Functions for Scattered Data Interpolation
,”
Comput. Geosci.
,
22
(
5
), pp.
1203
1218
.
43.
Rippa
,
S.
,
1999
, “
An Algorithm for Selecting a Good Value for the Parameter c in Radial Basis Function Interpolation
,”
Adv. Comput. Math.
,
11
(
2
), pp.
193
210
.
44.
Zhang
,
Y.
,
Wang
,
S.
, and
Ji
,
G.
,
2015
, “
A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications
,”
Math. Probl. Eng.
,
2015
, p.
931256
.
45.
Zhang
,
X.
,
Lu
,
Z.
,
Yun
,
W.
,
Feng
,
K.
, and
Wang
,
Y.
,
2020
, “
Line Sampling-Based Local and Global Reliability Sensitivity Analysis
,”
Struct. Multidiscipl. Optim.
,
61
(
1
), pp.
267
281
.
46.
Chowdhury
,
R.
,
Rao
,
B.
, and
Prasad
,
A. M.
,
2009
, “
Stochastic Sensitivity Analysis Using HDMR and Score Function
,”
Sadhana
,
34
(
6
), pp.
967
986
.
47.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
.
48.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
49.
Wu
,
J.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
On Reliability Analysis Method Through Rotational Sparse Grid Nodes
,”
Mech. Syst. Signal Process.
,
147
, p.
107106
.
You do not currently have access to this content.