Abstract

In the design of artillery external ballistics, sensitivity analysis can effectively quantify the influence of multi-source uncertain parameters on the dispersion of projectile landing points to improve the precise attack ability of artillery. However, for a complicated artillery external ballistic system containing multiple inputs and outputs, its mapping relationships are not definite under uncertainty and it is difficult to estimate a comprehensive sensitivity index due to involving the calculation of high dimensional integral. Therefore, a sensitivity analysis method based on the combination of variance and covariance decomposition with the approximate high dimensional model representation (AHDMR) is proposed to measure the influence of muzzle state parameters, projectile characteristic parameters, etc. on projectile landing points under uncertainty in this paper. First, we establish the numerical simulation model of artillery external ballistics by combing the external ballistic theory and Runge–Kutta algorithm to acquire the mapping relationships between the uncertain input parameters and the dispersion of projectile landing points and implement uncertainty analysis under different uncertainty levels (UL) and distributions. Then, with the use of a set of orthogonal polynomials for uniform and Gaussian distribution, respectively, the high dimensional model representation of the mapping relationship is approximately expressed and the compressive sensitivity indices can be effectively estimated based on the Monte Carlo simulation. Moreover, the comparison results of two numerical examples indicate the proposed sensitivity analysis method is accurate and practical. Finally, through the method, the importance rankings of multi-uncertain parameters on projectile landing points for two distributions are effectively quantified under the UL = [0.01, 0.02, 0.03, 0.04, 0.05].

References

1.
Wang
,
Y. W.
,
Zhu
,
W. F.
,
Di
,
J. W.
, and
Hu
,
X. H.
,
2018
, “
Study on the Analysis Method on Ballistic Performance of Deterred Propellant With Large Web Size in Large Caliber Artillery
,”
Def. Technol.
,
14
(
5
), pp.
522
526
.
2.
Wang
,
Z. S.
,
2010
, “
Effect of Time Space Change of Meteorologic Condition on Firing Accuracy of Artillery Element
,”
J. Ballist.
,
22
(
2
), pp.
103
106
.
3.
Rui
,
X. T.
,
2011
, “
Launch Dynamics of Multibody System and its Applications
,”
Eng. Sci.
,
13
(
10
), pp.
76
78
.
4.
Wu
,
R. W.
, and
Wang
,
Z. S.
,
2004
, “
Study on the Firing Accuracy of Self-Propelled Artillery Systems
,”
Acta Armamentarii
,
25
(
4
), pp.
407
409
.
5.
Cao
,
N.
,
Wang
,
X. F.
,
Xu
,
Y. D.
, and
Yin
,
Q.
,
2012
, “
Evaluation on Firing Dispersion of Wheeled Artillery Based on Stepwise Regression Analysis
,”
J. Ballist.
,
24
(
4
), pp.
42
46
.
6.
Xiao
,
H.
,
Yang
,
G. L.
, and
Ge
,
J. L.
,
2017
, “
Surrogate-Based Multi-Objective Optimization of Firing Accuracy and Firing Stability for a Towed Artillery
,”
J. Vibroengineering
,
19
(
1
), pp.
290
301
.
7.
Huang
,
H. Z.
, and
Zhang
,
X.
,
2009
, “
Design Optimization With Discrete and Continuous Variables of Aleatory and Epistemic Uncertainties
,”
ASME. J. Mech. Des.
,
131
(
3
), p.
031006
.
8.
Zhang
,
J. H.
,
Gao
,
L.
, and
Xiao
,
M.
,
2020
, “
A New Hybrid Reliability-Based Design Optimization Method Under Random and Interval Uncertainties
,”
Int. J. Numer. Methods Eng.
,
121
(
19
), pp.
4435
4457
.
9.
Hu
,
J. X.
, and
Qiu
,
Z. P.
,
2010
, “
Non-Probabilistic Convex Models and Interval Analysis Method for Dynamic Response of a Beam With Bounded Uncertainty
,”
Appl. Math. Model.
,
34
(
3
), pp.
725
734
.
10.
Qian
,
L. F.
,
Chen
,
G. S.
, and
Wang
,
M. M.
,
2020
, “
The Effects of Initial State Parameters of Projectiles at Muzzle on Their Ground Dispersion
,”
Acta Armamentarii
,
41
(
5
), pp.
833
841
.
11.
Qian
,
L. F.
, and
Chen
,
G. S.
,
2017
, “
The Uncertainty Propagation Analysis of the Projectile-Barrel Coupling Problem
,”
Def. Technol.
,
13
(
4
), pp.
229
233
.
12.
Dursun
,
T.
,
2020
, “
Effects of Projectile and Gun Parameters on the Dispersion
,”
Def. Sci. J.
,
70
(
2
), pp.
166
174
.
13.
Khalil
,
M.
,
Abdalla
,
H.
, and
Kamal
,
O.
,
2009
, “
Dispersion Analysis for Spinning Artillery Projectile
,”
13th International Conference on Aerospace Sciences & Aviation Technology
,
Kobry Elkobbah, Cairo, Egypt
,
May 26–28
, pp.
1
12
.
14.
Chen
,
Q.
,
Wang
,
Z. Y.
, and
Chang
,
S. J.
,
2014
, “
Optimal Trajectory Design Under Uncertainty for a Gliding Guided Projectile
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
9
), pp.
2593
2604
.
15.
Liu
,
J.
,
Liu
,
Q. M.
,
Han
,
X.
,
Jiang
,
C.
, and
Tao
,
Y. R.
,
2019
, “
A New Global Sensitivity Measure Based on Derivative-Integral and Variance Decomposition and Its Application in Structural Crashworthiness
,”
Struct. Multidiscipl. Optim.
,
60
(
6
), pp.
2249
2264
.
16.
Liu
,
Q. M.
,
Tong
,
N. C.
, and
Han
,
X.
,
2021
, “
A Global Sensitivity Analysis Method for Multi-Input Multi-Output System and Its Application in Structural Design
,”
Int. J. Comput. Methods
, p.
2141005
.
17.
Liu
,
Q. M.
,
Wu
,
X. F.
,
Han
,
X.
,
Liu
,
J.
,
Zhang
,
Z. Y.
, and
Guo
,
S. J.
,
2020
, “
Sensitivity Analysis and Interval Multi-Objective Optimization for an Occupant Restraint System Considering Craniocerebral Injury
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024502
.
18.
Liu
,
Q. M.
,
Li
,
Y. J.
,
Cao
,
L.
,
Lei
,
F.
, and
Wang
,
Q.
,
2018
, “
Structural Design and Global Sensitivity Analysis of the Composite B-Pillar With Ply Drop-Off
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
965
975
.
19.
Xu
,
L. Y.
,
Lu
,
Z. Z.
,
Li
,
L. Y.
, and
Shi
,
Y.
,
2019
, “
Sensitivity Analysis Method for Model With Correlated Inputs and Multivariate Output and Its Application to Aircraft Structure
,”
Comput. Methods Appl. Mech. Eng.
,
355
, pp.
373
404
.
20.
Lecampion
,
B.
, and
Constantinescu
,
A.
,
2005
, “
Sensitivity Analysis for Parameter Identification in Quasi-Static Poroelasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
29
(
2
), pp.
163
185
.
21.
Liu
,
Q. M.
,
Liu
,
J.
,
Guan
,
F. J.
,
Han
,
X.
,
Cao
,
L. X.
, and
Shan
,
K. Z.
,
2019
, “
Identification of the Visco-Hyperelastic Properties of Brain White Matter Based on the Combination of Inverse Method and Experiment
,”
Med. Biol. Eng. Comput.
,
57
(
5
), pp.
1109
1120
.
22.
Campos
,
A. A.
,
2011
, “
Development of an Optimization Framework for Parameter Identification and Shape Optimization Problems in Engineering
,”
Int. J. Manuf. Mater. Mech. Eng.
,
1
(
1
), pp.
57
59
.
23.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2016
, “
Post Optimization for Accurate and Efficient Reliability-Based Design Optimization Using Second-Order Reliability Method Based on Importance Sampling and Its Stochastic Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
107
(
2
), pp.
93
108
.
24.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2010
, “
Sensitivity Analyses of FORM-Based and DRM-Based Performance Measure Approach (PMA) for Reliability-Based Design Optimization (RBDO)
,”
Int. J. Numer. Methods Eng.
,
82
(
1
), pp.
26
46
.
25.
Plevris
,
V.
,
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
,
2010
, “
Neurocomputing Strategies for Solving Reliability-Robust Design Optimization Problems
,”
Eng. Comput.
,
27
(
7
), pp.
819
840
.
26.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
, pp.
56
103
.
27.
Jérôme
,
M.
,
2011
, “
Global and Local Sensitivity Analysis Methods for a Physical System
,”
Eur. J. Phys.
,
32
(
6
), p.
1577
.
28.
Castillo
,
E.
,
Conejo
,
A. J.
,
Mínguez
,
R.
, and
Castillo
,
C.
,
2006
, “
A Closed Formula for Local Sensitivity Analysis in Mathematical Programming
,”
Eng. Optim.
,
38
(
1
), pp.
93
112
.
29.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Sallaberry
,
C. J.
, and
Storlie
,
C. B.
,
2006
, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1175
1209
.
30.
Saltelli
,
A.
, and
Marivoet
,
J.
,
1990
, “
Non-Parametric Statistics in Sensitivity Analysis for Model Output: A Comparison of Selected Techniques
,”
Reliab. Eng. Syst. Saf.
,
28
(
2
), pp.
229
253
.
31.
Sobol’
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
32.
Borgonovo
,
E.
,
2007
, “
A New Uncertainty Importance Measure
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
771
784
.
33.
Liu
,
H. B.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2006
, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
326
336
.
34.
Liu
,
Q. M.
,
Dai
,
Y. X.
,
Wu
,
X. F.
,
Han
,
X.
,
Ouyang
,
H.
, and
Li
,
Z. R.
,
2021
, “
A Non-probabilistic Uncertainty Analysis Method Based on Ellipsoid Possibility Model and Its Applications in Multi-Field Coupling Systems
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114051
.
35.
Yang
,
Q. S.
,
Wang
,
W.
,
Li
,
Q. Z.
,
Wang
,
R. H.
, and
Wang
,
H. W.
,
2016
, “
Ballistic Missile Range Sensitivity Parameter Analysis Based on Orthogonal Experiments
,”
Comm. Contr. Simul.
,
38
(
2
), pp.
115
119
.
36.
Li
,
Q.
,
Gu
,
K. Q.
, and
Wang
,
L.
,
2014
, “
Sensitivity Analysis and Optimization Research of Gun Structure Parameters Affecting Initial Projectile Disturbance
,”
J. Gun Laun. Contr.
,
35
(
4
), pp.
39
43
.
37.
Cao
,
X. L.
,
Qin
,
J. Q.
,
Di
,
C. C.
, and
Sun
,
Y. Z.
,
2015
, “
Influencing Factor Sensitivity Analysis of Dynamic Loading of the Projectile Engraving Experimental Facility
,”
Proceedings of the 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB)
,
Chongqing, China
,
Dec. 26–27
, pp.
935
939
.
38.
Liu
,
F. F.
,
Song
,
M.
,
Yu
,
H. L.
,
Si
,
Z. H.
,
Xu
,
Y. F.
,
Cheng
,
Y. G.
,
Ding
,
M. K.
, and
Rui
,
X. T.
,
2020
, “
Quantitative Analysis for Affecting Factors of Firing Dispersion of Tank
,”
J. Phys.: Conf. Ser.
,
1507
(
8
), pp.
082039
.
39.
Li
,
J. M.
,
Yan
,
W. M.
,
Lu
,
D. B.
,
Wang
,
S.
, and
Qu
,
Y. J.
,
2021
, “
Sensitivity Analysis of Factors Affecting for the Engraving of Rifle Projectile
,”
J. Phys. Conf. Ser.
,
1721
(
1
), p.
012050
.
40.
Machala
,
D.
,
Collin
,
F.
,
Gilson
,
M.
,
Albisser
,
M.
, and
Dobre
,
S.
,
2020
, “
Global Sensitivity Analysis for Modeling the Free-Flight Behavior of an Artillery Projectile
,”
Am. Inst. Aeronaut. Astronaut. J.
,
58
(
7
), pp.
3139
3148
.
41.
Gamboa
,
F.
,
Janon
,
A.
,
Klein
,
T.
, and
Lagnoux
,
A.
,
2013
, “
Sensitivity Indices for Multivariate Outputs
,”
C. R. Math.
,
351
(
7–8
), pp.
307
310
.
42.
Xu
,
L. Y.
,
Lu
,
Z. Z.
, and
Xiao
,
S. N.
,
2019
, “
Generalized Sensitivity Indices Based on Vector Projection for Multivariate Output
,”
Appl. Math. Model.
,
66
, pp.
592
610
.
43.
Lamboni
,
M.
,
2019
, “
Multivariate Sensitivity Analysis: Minimum Variance Unbiased Estimators of the First-Order and Total-Effect Covariance Matrices
,”
Reliab. Eng. Syst. Saf.
,
187
(
Jul.
), pp.
67
92
.
44.
Xiao
,
S. N.
,
Lu
,
Z. Z.
, and
Wang
,
P.
,
2018
, “
Multivariate Global Sensitivity Analysis for Dynamic Models Based on Wavelet Analysis
,”
Reliab. Eng. Syst. Saf.
,
170
, pp.
20
30
.
45.
Li
,
L. Y.
,
Liu
,
Y. S.
,
Shi
,
Z. Y.
, and
Wang
,
P.
,
2020
, “
Multivariate Sensitivity Analysis for Dynamic Models With Both Random and Random Process Inputs
,”
Appl. Math. Model.
,
81
, pp.
92
112
.
46.
Li
,
L. Y.
,
Lu
,
Z. Z.
, and
Wu
,
D. Q.
,
2016
, “
A New Kind of Sensitivity Index for Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
147
, pp.
123
131
.
47.
Cheng
,
K.
,
Lu
,
Z. Z.
, and
Zhang
,
K. C.
,
2019
, “
Multivariate Output Global Sensitivity Analysis Using Multi-Output Support Vector Regression
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
2177
2187
.
48.
Garcia-Cabrejo
,
O.
, and
Valocchi
,
A.
,
2014
, “
Global Sensitivity Analysis for Multivariate Output Using Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Safe.
,
126
, pp.
25
36
.
49.
Liu
,
Q. M.
,
Tong
,
N. C.
,
Wu
,
X. F.
,
Han
,
X.
, and
Chao
,
C.
,
2021
, “
A Generalized Sensitivity Analysis Method Based on Variance and Covariance Decomposition of Summatory Functions for Multi-Input Multi-Output Systems
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114009
.
50.
Sobol’
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Safe.
,
79
(
2
), pp.
187
193
.
51.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Safe.
,
52
(
1
), pp.
1
17
.
52.
Han
,
Z. P.
,
2014
,
Exterior Ballistics of Projectiles and Rockets
,
Beijing Institute of Technology Press
,
Beijing
, pp.
25
69
.
You do not currently have access to this content.