Abstract

Current legged landers are typical truss structures acting as one type of fundamental equipment for the close-range extraterrestrial exploration missions. Unluckily, the development process applying the current design framework always consumes a long time span searching for the final design, accompanying masses of trial and error with inefficiency and diseconomy. Its kernel reason is that the stages from concept to scheme employ the paradigm of structural-analysis-oriented redesign and untimely embed physical prototype experiments in masses of iterative design cycles. Furthermore, the current framework cannot support the creative development of future legged landers with novel functions and mechanisms. Herein, we present a complete computable design framework for speeding up the development of both current and future legged landers, highlighted by new mathematical models and new principles of forward-design paradigm and multi-mode synergistic design paradigm. It applies the numerical prototype simulation instead of the physical prototype experiment in most iterative processes. This work will facilitate the extraterrestrial exploration missions using the current legged landers (truss-based) and the future legged lander (robot-based).

References

1.
Golombek
,
M.
,
Kipp
,
D.
,
Warner
,
N.
,
Daubar
,
I. J.
,
Fergason
,
R.
,
Kirk
,
R. L.
,
Beyer
,
R.
,
Huertas
,
A.
,
Piqueux
,
S.
,
Putzig
,
N. E.
,
Campbell
,
B. A.
,
Morgan
,
G. A.
,
Charalambous
,
C.
,
Pike
,
W. T.
,
Gwinner
,
K.
,
Calef
,
F.
,
Kass
,
D.
,
Mischna
,
M.
,
Ashley
,
J.
,
Bloom
,
C.
,
Wigton
,
N.
,
Hare
,
T.
,
Schwartz
,
C.
,
Gengl
,
H.
,
Redmond
,
L.
,
Trautman
,
M.
,
Sweeney
,
J.
,
Grima
,
C.
,
Smith
,
I. B.
,
Sklyanskiy
,
E.
,
Lisano
,
M.
,
Benardini
,
J.
,
Smrekar
,
S.
,
Lognonné
,
P.
, and
Banerdt
,
W. B.
,
2017
, “
Selection of the Insight Landing Site
,”
Space Sci. Rev.
,
211
(
1–4
), pp.
5
95
.
2.
Alkalai
,
L.
,
Solish
,
B.
,
Elliott
,
J.
,
McElrath
,
T.
,
Mueller
,
J.
, and
Parker
,
J.
,
2013
, “
Orion/MoonRise: A Proposed Human & Robotic Sample Return Mission From the Lunar South Pole-Aitken Basin
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 2–9
.
3.
Cohen
,
B. A.
,
Chavers
,
D. G.
, and
Ballard
,
B. W.
,
2012
, “
NASA'S Robotic Lunar Lander Development Project
,”
Acta Astronaut.
,
79
, pp.
221
240
.
4.
Orloff
,
R. W.
,
2000
,
Apollo by the Numbers: A Statistical Reference
, Vol.
4029
,
National Aeronautics and Space Administration
,
Washington, DC
.
5.
NASA
,
1969
,
Surveyor Program Results Final Report
,
NASA-SP-184, USA
.
6.
Prince
,
J. L.
,
Desai
,
P. N.
,
Queen
,
E. M.
, and
Grover
,
M. R.
,
2011
, “
Mars Phoenix Entry, Descent, and Landing Simulation Design and Modeling Analysis
,”
J. Spacecr. Rockets
,
48
(
5
), pp.
756
764
.
7.
Harvey
,
B.
,
2007
,
Soviet and Russian Lunar Exploration
,
Springer-Praxis
,
UK
.
8.
Li
,
C.
,
Liu
,
J.
,
Ren
,
X.
,
Zuo
,
W.
,
Tan
,
X.
,
Wen
,
W.
,
Li
,
H.
,
Mu
,
L.
,
Su
,
Y.
,
Zhang
,
H.
,
Yan
,
J.
, and
Ouyang
,
Z.
,
2015
, “
The Change 3 Mission Overview
,”
Space Sci. Rev.
,
190
(
1–4
), pp.
85
101
.
9.
Bibring
,
J. P.
,
Rosenbauer
,
H.
,
Boehnhardt
,
H.
,
Ulamec
,
S.
,
Biele
,
J.
,
Espinasse
,
S.
,
Feuerbacher
,
B.
,
Gaudon
,
P.
,
Hemmerich
,
P.
,
Kletzkine
,
P.
,
Moura
,
D.
,
Mugnuolo
,
R.
,
Nietner
,
G.
,
Pätz
,
B.
,
Roll
,
R.
,
Scheuerle
,
H.
,
Szegö
,
K.
, and
Wittmann
,
K.
,
2007
, “
The Rosetta Lander (“Philae”) Investigations
,”
Space Sci. Rev.
,
128
(
1–4
), pp.
205
220
.
10.
Maeda
,
T.
,
Otsuki
,
M.
,
Hashimoto
,
T.
, and
Hara
,
S.
,
2016
, “
Attitude Stabilization for Lunar and Planetary Lander With Variable Damper
,”
J. Guid. Control Dyn.
,
39
(
8
), pp.
1790
1804
.
11.
Ding
,
Z.
,
Wu
,
H.
,
Wang
,
C.
, and
Ding
,
J.
,
2019
, “
Hierarchical Optimization of Landing Performance for Lander With Adaptive Landing Gear
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
24
35
.
12.
MarsOne
,
2020
,
Roadmap of MarsOne
, https://www.mars-one.com/ mission/roadmap, Accessed March 30, 2021.
13.
Moon Express
,
2020
,
Scalable Robotic Spacecraft
, https://moonexpress.com, Accessed March 30, 2021.
14.
Heldmann
,
J. L.
,
Stoker
,
C. R.
,
Gonzales
,
A.
,
McKay
,
C. P.
,
Davila
,
A.
,
Glass
,
B. J.
,
Lemke
,
L. L.
,
Paulsen
,
G.
,
Willson
,
D.
, and
Zacny
,
K.
,
2017
, “
Red Dragon Drill Missions to Mars
,”
Acta Astronaut.
,
141
, pp.
79
88
.
15.
Han
,
Y.
,
Guo
,
W.
,
Peng
,
Z.
,
He
,
M.
,
Gao
,
F.
, and
Yang
,
J.
,
2021
, “
Dimensional Synthesis of the Reconfigurable Legged Mobile Lander With Multi-mode and Complex Mechanism Topology
,”
Mech. Mach. Theory
,
155
(
1
), p.
104097
.
16.
Lin
,
R.
,
Guo
,
W.
,
Li
,
M.
,
Hu
,
Y.
, and
Han
,
Y.
,
2017
, “
Novel Design of a Legged Mobile Lander for Extraterrestrial Planet Exploration
,”
Int. J. Adv. Robot. Syst.
,
14
(
6
), p.
256006380
.
17.
Han
,
Y.
, and
Guo
,
W.
,
2019
, “
Novel Design of the Actuation-Transmission System for Legged Mobile Lander Considering Large Impact
,”
The 15th IFToMM World Congress
,
Kracow, Poland
,
June 30–July 4
.
18.
Han
,
Y.
, and
Guo
,
W.
,
2019
, “
Dimensional Synthesis for the Chang'e-Type Legged Mobile Lander Based on Performance Atlas
,”
Proceedings of the 5th IFToMM Conference on Mechanisms, Transmissions and Applications
,
Dalian, China
,
Oct. 9–11
.
19.
Han
,
Y.
,
Zhou
,
C.
, and
Guo
,
W.
,
2021
, “
Singularity Loci, Bifurcated Evolution Routes, and Configuration Transitions of Reconfigurable Legged Mobile Lander from Adjusting, Landing, to Roving
,”
ASME J. Mech. Rob.
,
13
(
4
), pp.
1
11
.
20.
G
,
M. T.
, and
Cole
,
A. D. A.
,
2013
, “
Mighty Eagle: The Development and Flight Testing of an Autonomous Robotic Lander Test Bed
,”
Johns Hopkins APL Tech. Dig.
,
3
(
32
), pp.
619
635
.
21.
Yue
,
S.
,
Nie
,
H.
,
Zhang
,
M.
,
Wei
,
X.
, and
Gan
,
S.
,
2018
, “
Design and Landing Dynamic Analysis of Reusable Landing Leg for a Near- Space Manned Capsule
,”
Acta Astronaut.
,
147
, pp.
9
26
.
22.
Simplício
,
P.
,
Marcos
,
A.
, and
Bennani
,
S.
,
2019
, “
Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark
,”
J. Spacecr. Rockets
,
57
(
1
), pp.
1
16
.
23.
Zupp
,
G. A.
, and
Doiron
,
H. H.
,
1971
,
A Mathematical Procedure for Predicting the Touchdown Dynamics of a Soft-Landing Vehicle
, NASA-TN-D-7045.
24.
Zeng
,
F.
,
Yang
,
J.
,
Man
,
J.
,
Zhu
,
W.
,
Xu
,
Q.
, and
Luo
,
M.
,
2011
, “
Study on Design Method of Landing Buffer Mechanism of Lunar Lander
,”
Spacecr. Eng.
,
20
(
2
), pp.
46
51
.
25.
Yang
,
J.
,
2015
,
Spacecraft Landing Buffer Mechanism
,
China Aerospace Publishing House
,
Beijing, China
.
26.
Wu
,
H.
,
Wang
,
C.
,
Ding
,
J.
,
Man
,
J.
, and
Luo
,
M.
,
2016
, “
Soft Landing Performance Optimization of a New Lander Based on Multiple Operating Conditions
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
43
(
4
), pp.
776
781
.
27.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.
28.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
P. R.
,
Vihinen
,
J.
, and
Ellman
,
A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081101
.
29.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2016
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071405
.
30.
Yang
,
T.
,
Liu
,
A.
,
Jin
,
Q.
,
Luo
,
Y.
,
Shen
,
H.
, and
Hang
,
L.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
31.
Huang
,
T.
,
Li
,
Z. X.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.
32.
Shen
,
Z.
,
Allison
,
G.
, and
Cui
,
L.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), pp.
092302
.
33.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
J. Mech. Robot.
,
5
(
3
), p.
0310043
.
34.
Han
,
Y.
,
Guo
,
W.
,
Gao
,
F.
, and
Yang
,
J.
,
2019
, “
A New Dimension Design Method for the Cantilever-Type Legged Lander Based on Truss-Mechanism Transformation
,”
Mech. Mach. Theory
,
142
(
12
), p.
103611
.
35.
Shen
,
Z.
,
Allison
,
G.
, and
Cui
,
L.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092302
.
36.
Stelmack
,
M. A.
,
Batill
,
S. M.
, and
Beck
,
B. C.
,
2000
, “
Design of an Aircraft Brake Component Using an Interactive Multidisciplinary Design Optimization Framework
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
70
76
.
37.
Jones
,
R. H.
,
1970
,
Landing Impact Attenuation for Non-surface-Planning Lander
, NASA-SP-8046,
USA
.
38.
Rogers
,
W. F.
,
1972
,
Apollo Experience Report—Lunar Module Landing Gear Subsystem
, NASA-TN-D-6850,
USA
.
39.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
40.
Liu
,
X.
,
Wang
,
J. S.
, and
Pritschow
,
G.
,
2006
, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
41.
Yoshikawa
,
T.
,
1990
,
Foundations of Robotics: Analysis and Control
,
The MIT Press
,
London, UK
.
42.
Papadopoulos
,
E. G.
,
Rey
,
D. A.
,
2000
, “
The Force-Angle Measure of Tipover Stability Margin for Mobile Manipulators
,”
Veh. Syst. Dyn.
,
33
(
1
),
29
48
(2000).
43.
Lewandowski
,
C. M.
,
2005
,
NASA's Exploration Systems Architecture Study
, NASA-TM-2005-214062.
44.
Yang
,
J.
,
Zeng
,
F.
,
Man
,
J.
, and
Zhu
,
W.
,
2014
, “
Design and Verification of the Landing Impact Attenuation System for Chang'E-3 Lander
,”
Sci. Sin. Technol.
,
44
(
05
), pp.
440
449
.
45.
China National Space Administration
,
2019
, China's First Mars Exploration Lander Hovering and Obstacle Avoidance Test Video, http://www.cnsa.gov.cn/n6758823/n6758838/c6808108/content.html, Accessed March 30, 2021.
46.
Gao
,
F.
,
Zhang
,
X. Q.
,
Zhao
,
Y. S.
, and
Zu
,
W. B.
,
1995
, “
Distribution of Some Properties in Physical Model of the Solution Space of 2-DOF Parallel Planar Manipulators
,”
Mech. Mach. Theory
,
30
(
6
), pp.
811
817
.
47.
Liu
,
X.
, and
Wang
,
J.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory.
,
42
(
9
), pp.
1210
1224
.
48.
Zheng
,
G.
,
Nie
,
H.
,
Chen
,
J.
,
Chen
,
C.
, and
Lee
,
H. P.
,
2018
, “
Dynamic Analysis of Lunar Lander During Soft Landing Using Explicit Finite Element Method
,”
Acta Astronaut.
,
148
(
7
), pp.
69
81
.
49.
Chen
,
J.
,
Nie
,
H.
, and
Bo
,
W.
,
2013
, “
Research on Touchdown Performance of Soft-Landing System With Flexible Body
,”
J. Vibroengineering
,
15
(
3
), pp.
1255
1262
.
50.
Laurenson
,
R. M.
,
Melliere
,
R. A.
, and
McGehee
,
J. R.
,
1973
, “
Analysis of Legged Landers for the Survivable Soft Landing of Instrument Payloads
,”
J. Spacecr. Rockets
,
10
(
3
), pp.
208
214
.
51.
Otto
,
O. R.
,
Laurenson
,
R. M.
,
Melliere
,
R. A.
, and
Moore
,
R. L.
,
1971
,
Analyses and Limited Evaluation of Payload and Legged Landing System Structures for the Survivable Soft Landing of Instrument Payloads
, NASA-CR-111919.
52.
Guan
,
Z.
,
Ma
,
Y.
,
Zheng
,
Z.
, and
Guo
,
N.
,
2018
, “
Prescribed Performance Control for Automatic Carrier Landing With Disturbance
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1335
1349
.
You do not currently have access to this content.