Abstract

Omnidirectional mobility is a popular method of moving in narrow spaces. In particular, the planar omnidirectional crawler previously developed by the authors can traverse unstable and uneven terrain with a large contact area. A novel point is that the proposed system is unique in its ability to carry heavy loads in all directions without getting stuck because of the large pressure-receiving area between the crawler and the ground. This work will facilitate omnidirectional motion, which has important implications for the use of robots in spaces such as not only factories, distribution centers, and warehouses but also soft soil in disaster sites. The objective of the present study was to establish a design and control method for an omnidirectional crawler mechanism that can conduct holonomic and two-axis cross-driving. Only two motors are set on the crawler base for translation in the X- and Y-directions, and two large crawler units are arranged for turning. We design a small crawler that has higher traversing ability with a derailment prevention mechanism and tapered track. Further, the relationship between the motor rotational speed as input and crawler velocity as output was verified for control. In addition, it was demonstrated experimentally that the proposed crawler could travel across various types of rough terrain in a target direction.

References

1.
Doroftei
,
I.
,
Grosu
,
V.
, and
Spinu
,
V.
,
2007
,
Omnidirectional Mobile Robot–Design and Implementation. Bioinspiration and Robotics Walking and Climbing Robots
,
M. K.
Habib
, ed.,
INTECH Open Access Publisher
.
2.
Udengaard
,
M.
, and
Iagnemma
,
K.
,
2009
, “
Analysis, Design, and Control of an Omnidirectional Mobile Robot in Rough Terrain
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121002
.
3.
Taheri
,
H.
, and
Zhao
,
C. X.
,
2020
, “
Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches
,”
Mech. Mach. Theory
,
153
, p.
103958
.
4.
Chen
,
C.
,
Ostrovskaya
,
S.
, and
Angeles
,
J.
,
2007
, “
The Kinematics of Wheeled Mobile Robots With Dual-Wheel Transmission Units
,”
ASME. J. Mech. Des.
,
130
(
1
), p.
011004
.
5.
Wada
,
M.
,
Tominaga
,
Y.
, and
Mori
,
S.
,
1995
, “
Omnidirectional Holonomic Mobile Robot Using Nonholonomic Wheels
,”
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA,
Vol.
3
, pp.
446
453
.
6.
Nakano
,
E.
, and
Koyachi
,
N.
,
1983
, “
An Advanced Mechanism of the Omni-directional Vehicle (ODV) and Its Application to the Working Wheelchair for the Disabled
,”
Proceedings of 1983 International Conference on Advanced Robotics
,
Columbus, OH
,
June 13–15
, pp.
277
284
.
7.
Arai
,
T.
,
Nakano
,
E.
,
Hashino
,
S.
, and
Yamaba
,
K.
,
1981
, “
The Control and Application of Omni-directional Vehicle (ODV)
,”
Proceedings of the IFAC Control Science and Technology (8th Triennial World CongTess)
,
Kyoto, Japan
, pp.
1855
1860
.
8.
Ueno
,
Y.
,
Terashima
,
K.
,
Kitagawa
,
H.
,
Kakihara
,
K.
, and
Funato
,
K.
,
2010
, “
Development and Experimental Evaluation of a Novel Omnidirectional Wheel Mechanism
,”
Proceedings of International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR2010
,
Nagoya, Japan
,
Aug. 31–Sept. 3
, pp.
817
824
.
9.
Mori
,
Y.
,
Nakano
,
E.
,
Takahashi
,
T.
, and
Takayama
,
K.
,
1999
, “
Mechanism and Running Modes of New Omni-directional Vehicle ODV9
,”
JSME Int. J. C Mech. Syst.
,
42
(
1
), pp.
210
217
.
10.
Ueno
,
Y.
,
Ohno
,
T. I.
,
Terashima
,
K.
, and
Kitagawa
,
H.
,
2010
, “
Novel Differential Drive Steering System With Energy Saving and Normal Tire Using Spur Gear for an Omni-directional Mobile Robot
,”
Proceedings of 2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 4–8
, pp.
3763
3768
.
11.
Ganapathy
,
S.
,
1984
, “
Decomposition of Transformation Matrices for Robot Vision
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
Mar. 13–15
, pp.
130
139
.
12.
Grabowiecki
,
J.
,
1919
, “
Vehicle-Wheel
,” U.S. Patent No. 1305535 A.
13.
Harris
,
D. B.
,
2001
, “
Low Vibration Omni-Directional Wheel
,” Patent No. 6547340.
14.
Paromtchik
,
I. E.
,
Asama
,
H.
,
Lhjii
,
T.
, and
Endo
,
I.
,
1999
, “
A Control System for an Omnidirectional Mobile Robot
,”
Proceedings of 1999 IEEE International Conference on Control Applications
,
Kohala Coast, HI
,
Aug. 22–27
, pp.
1123
1128
.
15.
Chugo
,
D.
,
Kawabata
,
K.
,
Kaetsu
,
H.
,
Asama
,
H.
, and
Mishima
,
T.
,
2005
, “
Development of a Control System for an Omnidirectional Vehicle With Step-Climbing Ability
,”
Adv. Robot.
,
19
(
1
), pp.
55
71
.
16.
Asama
,
H.
,
Sato
,
M.
,
Kaetsu
,
H.
,
Ozaki
,
K.
,
Matsumoto
,
A.
, and
Endo
,
I.
,
1996
, “
Development of an Omni-directional Mobile Robot With 3 DOF Decoupling Drive Mechanism
,”
J. Robot. Soc. Jpn.
,
14
(
2
), pp.
249
254
.
17.
Ilon Bengt Erland,
1974
, “
Rad Fuer Ein Laufstabiles, Selbstfahrendes Fahrzeug
,” German Patent No. DE2354404A1.
18.
Tadakuma
,
K.
,
2006
, “
Tetrahedral Mobile Robot with Novel Ball Shape Wheel
,”
Proceedings of First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
BioRob
,
Pisa, Italy
, pp.
946
952
.
19.
Pin
,
F. G.
, and
Killough
,
S. M.
,
1994
, “
A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots
,”
IEEE Trans. Robot. Autom.
,
10
(
4
), pp.
480
489
.
20.
Damoto
,
R.
, and
Hirose
,
S.
,
2002
, “
Development of Holonomic Omnidirectional Vehicle ‘Vuton-II’ With Omni-discs
,”
J. Robot. Mechatron.
,
14
(
2
), pp.
186
192
.
21.
Hirose
,
S.
, and
Amano
,
S.
,
1993
, “
The VUTON Hi& Payload, High Efficiency Holonamic Omni-Directional Vehicle
,”
Proceedings of the 6th International Symposium on Robotics Research
,
Hidden Valley, PA
.
22.
Ullman
,
G.
,
2013
, “
Low Profile Omnidirectional Vehicle
,” U.S. Patent No. 8,540,038 B1.
23.
Zhang
,
Y.
, and
Huang
,
T.
,
2015
, “
Research on a Tracked Omnidirectional and Cross-Country Vehicle
,”
Mech. Mach. Theory
,
87
, pp.
18
44
.
24.
Chen
,
P.
,
Mitsutake
,
S.
,
Isoda
,
T.
, and
Shi
,
T.
,
2002
, “
Omni-Directional Robot and Adaptive Control Method for Off-Road Running
,”
IEEE Trans. Robot. Autom.
,
18
(
2
), pp.
251
256
.
25.
Wada
,
M.
,
Takag
,
A.
, and
Mori
,
S.
,
2000
, “
A Mobile Platform With a Dualwheel Caster-Drive Mechanism for Holonomic and Omnidirectional Mobile Robots
,”
Robotics Soc. Japan
,
18
(
8
), pp.
362
366
.
26.
West
,
M.
, and
Asada
,
H.
,
1992
, “
Design and Control of Ball Wheel Omnidirectional Vehicles
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Nice, France
, pp.
97
103
.
27.
Endo
,
T.
, and
Nakamura
,
Y.
,
2005
, “
An Omnidirectional Vehicle on a Basketball
,”
Proceedings of the 12th International Conference on Advanced Robotics, ICAR2005
,
Seattle, WA
, pp.
573
578
.
28.
Nagarajan
,
U.
,
Mampetta
,
A.
,
Kantor
,
G. A.
, and
Hollis
,
R. L.
,
2009
, “
State Transition, Balancing, Station Keeping, and Yaw Control for a Dynamically Stable Single Spherical Wheel Mobile Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Kobe, Japan
, pp.
998
1003
.
29.
Kumagai
,
M.
, and
Ochiai
,
T.
,
2008
, “
Development of a Robot Balancing on a Ball
,”
Proc. International Conference on Control, Automation and Systems
,
Hanoi, Vietnam
, pp.
433
438
.
30.
West
,
M.
, and
Asada
,
H.
,
1997
, “
Design of Ball Wheel Mechanisms for Omnidirectional Vehicles With Full Mobility and Invariant Kinematics
,”
ASME. J. Mech. Des.
,
119
(
2
), pp.
153
161
.
31.
Takenaka
,
T.
,
Hirano
,
M.
,
Izumi
,
H.
,
Kuwabara
,
K.
,
Koyama
,
T.
,
Kobashi
,
S.
,
Gomi
,
H.
,
Sasaki
,
M.
, and
Hamaya
,
K.
Friction Drive Device and Omni-Directional Vehicle Using the Same
,”
US20120061156 A1, Honda Motor Co., Ltd
.
32.
Takenaka
,
T.
, and
Akimoto
,
K.
,
2013
, “
Omnidirectional Vehicle
,” U.S. Patent No. 8,386,159,B2.
33.
Liddiard
,
W.
,
2015
, “
Omnidirectional Wheel
,” U.S. Patent No. 20160023511 A1.
34.
Komori
,
M.
,
Matsuda
,
K.
,
Terakawa
,
T.
,
Takeoka
,
F.
,
Nishihara
,
H.
, and
Ohashi
,
H.
,
2016
, “
Active Omni Wheel Capable of Active Motion in Arbitrary Direction and Omnidirectional Vehicle
,” J. Adv. Mech. Des. Syst. Manuf.,
10
(
6
), p.
JAMDSM0086
.
35.
Tadakuma
,
K.
,
Takane
,
E.
,
Fujita
,
M.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2019
, “
Omni-directional Rotational Drive Mechanism and Moving Body
,”
Tohoku University
, U.S. Patent No. 2019/0184737 A1.
36.
Canete
,
L.
, and
Takahashi
,
T.
,
2018
, “
Dynamic Braking of Omni-wheel Rollers for Dual Robot Cooperative Execution—Analysis and Design of Braking Mechanism
,”
Proceedings of the 19th SICE System Integration Division Annual Conference
,
Osaka, Japan
,
Dec. 13–15
, p.
2B1-01
.
37.
Lane
,
J. T.
, and
Voyles
,
R. M.
,
2015
, “
A 2-D Tread Mechanism for Hybridization in USAR Robotics
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Indiana, IN
,
Oct. 18–20
,
IEEE
, pp.
1
6
.
38.
Huff
,
J.
,
Conyers
,
S.
, and
Voyles
,
R.
,
2012
, “
Mothership—A Serpentine Tread/Limb Hybrid Marsupial Robot for USAR
,”
Proceedings of Safety, Security, and Rescue Robotics (SSRR), 2012 IEEE International Symposium
,
College Station, TX
, pp.
1
7
.
39.
Voyles
,
R. M.
, and
Godzdanker
,
R.
,
2008
, “
Side-Slipping Locomotion of a Miniature, Reconfigurable Limb/Tread Hybrid Robot
,”
Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics
,
Sendai, Japan
,
Oct. 21–24
,
IEEE
, pp.
58
64
.
40.
Tadakuma
,
K.
,
Ogata
,
H.
,
Tadakuma
,
R.
, and
Berengueres
,
J.
,
2014
, “
Torus Omnidirectional Driving Unit Mechanism Realized by Curved Crawler Belts
,”
Proceedings of IEEE International Conference on Robotics & Automation (ICRA)
,
Hong Kong
,
IEEE
, p.
2567
.
41.
West
,
M.
, and
Asada
,
H.
,
1992
, “
Design of a Holonomic Omnidirectional Vehicle
,”
Proc. Robotics and Automation 1992 IEEE International Conference
,
Nice, France
,
IEEE
, Vol.
1
, pp.
97
103
.
42.
Mark
,
A.
, and
West
,
T.
,
1993
, “
Omnidirectional Vehicle
,” Patent No. 5,186,270.
43.
Tadakuma
,
K.
, et al
,
2019
,
Tokhoku University and NEDO Press Release
, https://www.tohoku.ac.jp/en/news/research/moving_forward_and_backward_and_sideways.html
44.
Watanabe
,
M.
,
Tadakuma
,
K.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2020
, “
Bundled Rotary Helix Drive Mechanism Capable of Smooth Peristaltic Movement
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5537
5544
.
45.
Nagatani
,
K.
,
Kiribayashi
,
S.
,
Okada
,
Y.
,
Tadokoro
,
S.
,
Nishimura
,
T.
,
Yoshida
,
T.
,
Koyanagi
,
E.
, and
Hada
,
Y.
,
2011
, “
Redesign of Rescue Mobile Robot Quince Safety, Security, and Rescue Robotics (SSRR)
,”
Proceedings of the IEEE International Symposium
, pp.
13
18
46.
Yamauchi
,
B. M.
,
2004
, “
PackBot: A Versatile Platform For Military Robotics
,”
Defense and Security
, Vol.
5422
, pp.
228
237
.
47.
Takemori
,
T.
,
Miyake
,
M.
,
Hirai
,
T.
,
Wang
,
X.
,
Fukao
,
Y.
,
Adachi
,
M.
,
Yamaguchi
,
K.
,
Tanishige
,
S.
,
Nomura
,
Y.
,
Matsuno
,
F.
,
Fujimoto
,
T.
,
Nomura
,
A.
,
Tetsui
,
H.
,
Watanabe
,
M.
, and
Tadakuma
,
K.
,
2019
, “
Development of the Multifunctional Rescue Robot FUHGA2 and Evaluation at the World Robot Summit 2018
,”
Adv. Robot.
,
34
(
2
), pp.
119
131
.
48.
Moosavian
,
S. A. A.
,
Kalantari
,
A.
,
Semsarilar
,
H.
,
Aboosaeedan
,
E.
, and
Mihankhah
,
E.
,
2009
, “
ResQuake: A Tele-Operative Rescue Robot
,”
ASME. J. Mech. Des.
,
131
(
8
), p.
081005
.
49.
Tadakuma
,
K.
,
Takane
,
E.
,
Fujita
,
M.
,
Komatsu
,
H.
,
Nomura
,
A.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2017
, “
Planar Omnidirectional Crawler Mobile Mechanism—Development of Actual Mechanical Prototype and Basic Experiments
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
395
402
.
50.
Takane
,
E.
,
Tadakuma
,
K.
,
Shimizu
,
T.
,
Hayashi
,
S.
,
Watanabe
,
M.
,
Kagami
,
S.
,
Nagatani
,
K.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2019
, “
Basic Performance of Planar Omnidirectional Crawler During Direction Switching Using Disturbance Degree of Ground Evaluation Method
,”
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau
,
IEEE
pp.
2732
2739
.
51.
Attachment Chain, Tsubakimoto Chain Co.
, https://tsubaki.eu/products/chain/attachment-chain/
52.
Takane
,
E.
,
Tadakuma
,
K.
,
Fujita
,
M.
,
Komatsu
,
H.
,
Nomura
,
A.
,
Ichimura
,
T.
,
Yamamoto
,
T.
,
Ambe
,
Y.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2016
, “
Two Axes Orthogonal Drive Transmission for Omnidirectional Crawler With Surface Contact
,”
Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics
,
Lausanne, Switzerland
,
EPFL
, pp.
378
383
.
You do not currently have access to this content.