Abstract

Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization method for designing large-scale, 3D variable-axial lightweight composite structures subject to multiple load cases. The computational challenges associated with large-scale 3D anisotropic topology optimization with extremely low volume fraction are addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representations such as Euler angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for tailored fiber placement (TFP) is discussed, which motivates future work toward a fully automated design synthesis.

References

1.
Spickenheuer
,
A.
,
Schulz
,
M.
,
Gliesche
,
K.
, and
Heinrich
,
G.
,
2008
, “
Using Tailored Fibre Placement Technology for Stress Adapted Design of Composite Structures
,”
Plast. Rubber. Compos.
,
37
(
5
), pp.
227
232
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin/Heidelberg
.
3.
Pedersen
,
P.
,
1989
, “
On Optimal Orientation of Orthotropic Materials
,”
Struct. Optim.
,
1
(
2
), pp.
101
106
.
4.
Safonov
,
A. A.
,
2019
, “
3D Topology Optimization of Continuous Fiber-Reinforced Structures Via Natural Evolution Method
,”
Compos. Struct.
,
215
, pp.
289
297
.
5.
Almeida Jr
.,
J. H. S.
,
Bittrich
,
L.
,
Nomura
,
T.
, and
Spickenheuer
,
A.
,
2019
, “
Cross-Section Optimization of Topologically-Optimized Variable-Axial Anisotropic Composite Structures
,”
Compos. Struct.
,
225
, p.
111150
.
6.
Bruyneel
,
M.
, and
Fleury
,
C.
,
2002
, “
Composite Structures Optimization Using Sequential Convex Programming
,”
Adv. Eng. Soft.
,
33
(
7
), pp.
697
711
.
7.
Schmidt
,
M.-P.
,
Couret
,
L.
,
Gout
,
C.
, and
Pedersen
,
C. B.
,
2020
, “
Structural Topology Optimization With Smoothly Varying Fiber Orientations
,”
Struct. Multidiscipl. Optim.
,
62
(
6
), pp.
3105
3126
.
8.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
9.
Luo
,
C.
, and
Guest
,
J. K.
,
2021
, “
Optimizing Topology and Fiber Orientations With Minimum Length Scale Control in Laminated Composites
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021704
.
10.
Dapogny
,
C.
,
Estevez
,
R.
,
Faure
,
A.
, and
Michailidis
,
G.
,
2019
, “
Shape and Topology Optimization Considering Anisotropic Features Induced by Additive Manufacturing Processes
,”
Comput. Methods. Appl. Mech. Eng.
,
344
, pp.
626
665
.
11.
Fernandez
,
F.
,
Compel
,
W. S.
,
Lewicki
,
J. P.
, and
Tortorelli
,
D. A.
,
2019
, “
Optimal Design of Fiber Reinforced Composite Structures and Their Direct Ink Write Fabrication
,”
Comput. Methods. Appl. Mech. Eng.
,
353
, pp.
277
307
.
12.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2021
, “
Investigation of Parameter Spaces for Topology Optimization With Three-Dimensional Orientation Fields for Multi-Axis Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051701
.
13.
Nomura
,
T.
,
Dede
,
E. M.
,
Lee
,
J.
,
Yamasaki
,
S.
,
Matsumori
,
T.
,
Kawamoto
,
A.
, and
Kikuchi
,
N.
,
2015
, “
General Topology Optimization Method With Continuous and Discrete Orientation Design Using Isoparametric Projection
,”
Int. J. Numer. Methods Eng.
,
101
(
8
), pp.
571
605
.
14.
Nomura
,
T.
,
Kawamoto
,
A.
,
Kondoh
,
T.
,
Dede
,
E. M.
,
Lee
,
J.
,
Song
,
Y.
, and
Kikuchi
,
N.
,
2019
, “
Inverse Design of Structure and Fiber Orientation by Means of Topology Optimization With Tensor Field Variables
,”
Compos. Part B: Eng.
,
176
, p.
107187
.
15.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
16.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Yamasaki
,
S.
,
Nomura
,
T.
,
Kondoh
,
T.
, and
Nishiwaki
,
S.
,
2011
, “
Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function
,”
Struct. Multidiscipl. Optim.
,
44
(
1
), pp.
19
24
.
17.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2018
, “
Multi-Component Topology and Material Orientation Design of Composite Structures (MTO-C)
,”
Comput. Methods. Appl. Mech. Eng.
,
342
, pp.
438
457
.
18.
Bendsøe
,
M.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Multidiscipl. Optim.
,
1
(
4
), pp.
193
202
.
19.
Advani
,
S. G.
, and
Tucker III
,
C. L.
,
1987
, “
The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites
,”
J. Rheol.
,
31
(
8
), pp.
751
784
.
20.
Maute
,
K.
, and
Ramm
,
E.
,
1995
, “
Adaptive Topology Optimization
,”
Struct. Optim.
,
10
(
2
), pp.
100
112
.
21.
Lambe
,
A. B.
, and
Czekanski
,
A.
,
2018
, “
Topology Optimization Using a Continuous Density Field and Adaptive Mesh Refinement
,”
Int. J. Numer. Methods Eng.
,
113
(
3
), pp.
357
373
.
22.
Baiges
,
J.
,
Martínez-Frutos
,
J.
,
Herrero-Pérez
,
D.
,
Otero
,
F.
, and
Ferrer
,
A.
,
2019
, “
Large-Scale Stochastic Topology Optimization Using Adaptive Mesh Refinement and Coarsening Through a Two-Level Parallelization Scheme
,”
Comput. Methods. Appl. Mech. Eng.
,
343
, pp.
186
206
.
23.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2003
, “
An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
57
(
10
), pp.
1413
1430
.
24.
Guest
,
J. K.
, and
Smith Genut
,
L. C.
,
2010
, “
Reducing Dimensionality in Topology Optimization Using Adaptive Design Variable Fields
,”
Int. J. Numer. Methods Eng.
,
81
(
8
), pp.
1019
1045
.
25.
Liu
,
H.
,
Hu
,
Y.
,
Zhu
,
B.
,
Matusik
,
W.
, and
Sifakis
,
E.
,
2018
, “
Narrow-Band Topology Optimization on a Sparsely Populated Grid
,”
ACM Trans. Graphics (TOG)
,
37
(
6
), pp.
1
14
.
26.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
27.
Tang
,
C.
,
Bo
,
P.
,
Wallner
,
J.
, and
Pottmann
,
H.
,
2016
, “
Interactive Design of Developable Surfaces
,”
ACM Trans. Graphics
,
35
(
2
), p.
12
.
28.
Stein
,
O.
,
Grinspun
,
E.
, and
Crane
,
K.
,
2018
, “
Developability of Triangle Meshes
,”
ACM Trans. Graphics
,
37
(
4
), p.
77
.
29.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2021
, “
Anisotropic Multicomponent Topology Optimization for Additive Manufacturing With Build Orientation Design and Stress-Constrained Interfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011007
.
You do not currently have access to this content.