Abstract

Advances in additive manufacturing (AM) techniques have enabled the production of parts with complex internal geometries. However, the layer-based nature of additive processes often results in mechanical properties that vary based on the orientation of the feature relative to the build plane. Lattice structures have been a popular design application for additive manufacturing due to their potential uses in lightweight structural applications. Many recent works have explored the modeling, design, and fabrication challenges that arise in the multiscale setting of lattice structures. However, there remains a significant challenge in bridging the simplified computational models used in the design process and the more complex properties actually realized in fabrication. This study develops a design approach that captures orientation-dependent material properties that have been observed in metal AM processes, while remaining suitable for use in an iterative design process. Exemplar problems are utilized to investigate the potential design changes and performance improvements that can be attained by taking the directional dependence of the manufacturing process into account in the design of lattice structures.

References

References
1.
Guo
,
N.
, and
Leu
,
M.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
. 10.1007/s11465-013-0248-8
2.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
. 10.1115/1.4037305
3.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
. 10.1016/j.matdes.2017.11.021
4.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2015
, “
Effects of Build Orientation and Heat Treatmet on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
. 10.1016/j.addma.2014.12.008
5.
Dong
,
Z.
,
Liu
,
Y.
,
Li
,
W.
, and
Liang
,
J.
,
2019
, “
Orientation Dependency for Microstructure, Geometric Accuracy and Mechanical Properties of Selective Laser Melting AlSi10Mg Lattices
,”
J. Alloys Compd.
,
791
, pp.
490
500
. 10.1016/j.jallcom.2019.03.344
6.
Dressler
,
A.
,
Jost
,
E. W.
,
Miers
,
J. C.
,
Moore
,
D. G.
,
Seepersad
,
C. C.
, and
Boyce
,
B. L.
,
2019
, “
Heterogeneities Dominate Mechanical Performance of Additively Manufactured Metal Lattice Struts
,”
Addit. Manuf.
,
28
, pp.
692
703
. 10.1016/j.addma.2019.06.011
7.
Vandenbroucke
,
B.
, and
Kruth
,
J.-P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,
13
(
4
), pp.
196
203
. 10.1108/13552540710776142
8.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
9.
Messner
,
M.
,
2016
, “
Optimal Lattice-Structured Materials
,”
J. Mech. Phys. Solids
,
96
, pp.
162
183
. 10.1016/j.jmps.2016.07.010
10.
Reinhart
,
G.
,
Teufelhart
,
S.
, and
Riss
,
F.
,
2012
, “
Investigation of the Geometry-Dependent Anisotropic Material Behavior of Filigree Struts in ALM-Produced Lattice Structures
,”
Phys. Procedia
,
39
, pp.
471
479
. 10.1016/j.phpro.2012.10.063
11.
Suard
,
M.
,
Martin
,
G.
,
Lhuissier
,
P.
,
Dendievel
,
R.
,
Vignat
,
F.
,
Blandin
,
J. J.
, and
Villeneuve
,
F.
,
2015
, “
Mechanical Equivalent Diameter of Single Struts for the Stiffness Prediction of Lattice Structures Produced by Electron Beam Melting
,”
Addit. Manuf.
,
8
, pp.
124
131
. 10.1016/j.addma.2015.10.002
12.
Liu
,
L.
,
Kamm
,
P.
,
Garcia-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
. 10.1016/j.jmps.2017.07.003
13.
Melancon
,
D.
,
Bagheri
,
Z. S.
,
Johnston
,
R. B.
,
Liu
,
L.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2017
, “
Mechanical Characterization of Structurally Porous Biomaterials Built via Additive Manufacturing: Experiments, Predictive Models, and Design Maps for Load-Bearing Bone Replacement Implants
,”
Acta Biomateriala
,
63
, pp.
350
368
. 10.1016/j.actbio.2017.09.013
14.
Zhang
,
P.
,
Liu
,
J.
, and
To
,
A.
,
2017
, “
Role of Anisotropic Properties on Topology Optimization of Additive Manufactured Load Bearing Structures
,”
Scr. Mater.
,
135
, pp.
148
152
. 10.1016/j.scriptamat.2016.10.021
15.
Pasini
,
D.
, and
Guest
,
J.
,
2019
, “
Imperfect Architected Materials: Mechanics and Topology Optimization
,”
MRS Bullet.
,
44
(
10
), pp.
766
776
. 10.1557/mrs.2019.231
16.
Stankovic
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
The Effect of Anisotropy on the Optimization of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
17
, pp.
67
76
. 10.1016/j.addma.2017.07.004
17.
Watts
,
S.
,
Arrighi
,
W.
,
Kudo
,
J.
,
Tortorelli
,
D. A.
, and
White
,
D. A.
,
2019
, “
Simple, Accurate Surrogate Models of the Elastic Response of Three-Dimensional Open Truss Micro-Architectures With Application to Multiscale Topology Design
,”
Struct. Multidiscip. Optim.
,
60
(
5
), pp.
1887
1920
. 10.1007/s00158-019-02297-5
18.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
. 10.1007/s001580050176
19.
White
,
D.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1118
1135
. 10.1016/j.cma.2018.09.007
20.
Zhang
,
S.
,
Gain
,
A.
, and
Norato
,
J.
,
2020
, “
Adaptive Mesh Refinement for Topology Optimization With Discrete Geometric Components
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112930
. 10.1016/j.cma.2020.112930
21.
Watts
,
S.
, and
Tortorelli
,
D.
,
2017
, “
A Geometric Projection Method for Designing Three-Dimensional Open Lattices With Inverse Homogenization
,”
Int. J. Numer. Methods Eng.
,
112
(
11
), pp.
1564
1588
. 10.1002/nme.5569
22.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p. 111401. 10.1115/1.4040624
23.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J.
,
2020
, “
Multi-Material Topology Optimization of Lattice Structures Using Geometry Projection
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112895
. 10.1016/j.cma.2020.112895
24.
Dapogny
,
C.
,
Estevez
,
R.
,
Faure
,
A.
, and
Michailidis
,
G.
,
2019
, “
Shape and Topology Optimization Considering Anisotropic Features Induced by Additive Manufacturing Processes
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
626
665
. 10.1016/j.cma.2018.09.036
25.
Chung
,
P.
,
Tamma
,
K.
, and
Namburu
,
R.
,
2001
, “
Asymptotic Expansion Homogenization for Heterogeneous Media: Computational Issues and Applications
,”
Compos. Part A Appl. Sci. Manuf.
,
32
(
9
), pp.
1291
1301
. 10.1016/S1359-835X(01)00100-2
26.
Shahzamanian
,
M.
,
Tadepalli
,
T.
,
Rajendran
,
A. M.
,
Hodo
,
W. D.
,
Mohan
,
R.
,
Valisetty
,
R.
,
Chung
,
P. W.
, and
Ramsey
,
J. J.
,
2014
, “
Representative Volume Element Based Modeling of Cementitious Materials
,”
ASME J. Eng. Mater. Technol.
,
136
(
1
), p.
0110071
. 10.1115/1.4027324
27.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
28.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1175
1196
. 10.1007/s00158-014-1107-x
29.
Ting
,
T.
,
1996
,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford, UK
.
30.
Aremu
,
A.
,
Brennan-Craddock
,
J. P. J.
,
Panesar
,
A.
,
Ashcroft
,
I. A.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structure Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
. 10.1016/j.addma.2016.10.006
31.
Seepersad
,
C. C.
,
Allison
,
J. A.
,
Dressler
,
A. D.
,
Boyce
,
B. L.
, and
Kovar
,
D.
,
2020
, “An Experimental Approach for Enhancing the Predictability of Mechanical Properties of Additively Manufactured Architected Materials With Manufacturing-Induced Variability,”
Uncertainty Quantification in Multiscale Materials Modeling
,
Y.
Wang
and
D. L.
McDowell
, eds.,
Elsevier, Woodhead Publishing
, pp.
539
565
.
32.
Stainko
,
R.
,
2006
, “
An Adaptive Multilevel Approach to the Minimal Compliance Problem in Topology Optimization
,”
Commun. Numer. Methods Eng.
,
22
(
2
), pp.
109
118
. 10.1002/cnm.800
33.
Gorguluarslan
,
R.
,
Park
,
S. I.
,
Rosen
,
D. W.
, and
Choi
,
S. K.
,
2015
, “
A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111408
. 10.1115/1.4031012
34.
Dizon
,
J.
,
Espera
,
A. H.
,
Chen
,
Q.
, and
Advincula
,
R. C.
,
2018
, “
Mechanical Characterization of 3D-Printed Polymers
,”
Addit. Manuf.
, pp.
44
67
. 10.1016/j.addma.2017.12.002
35.
Du
,
Z.
,
Zhou
,
X. Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
. 10.1115/1.4041176
36.
Hu
,
J.
,
Li
,
M.
,
Yang
,
X.
, and
Gao
,
S.
,
2020
, “
Cellular Structure Design Based on Free Material Optimization Under Connectivity Control
,”
Comput. Aided Des.
,
127
, p.
102854
. 10.1016/j.cad.2020.102854
37.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
143
(
3
), p. 031708. 10.1115/1.4048628
You do not currently have access to this content.