Abstract

Identifying product attributes from the perspective of a customer is essential to measure the satisfaction, importance, and Kano category of each product attribute for product design. This article proposes automated keyword filtering to identify product attributes from online customer reviews based on latent Dirichlet allocation. The preprocessing for latent Dirichlet allocation is important because it affects the results of topic modeling; however, previous research performed latent Dirichlet allocation either without removing noise keywords or by manually eliminating them. The proposed method improves the preprocessing for latent Dirichlet allocation by conducting automated filtering to remove the noise keywords that are not related to the product. A case study of Android smartphones is performed to validate the proposed method. The performance of the latent Dirichlet allocation by the proposed method is compared to that of a previous method, and according to the latent Dirichlet allocation results, the former exhibits a higher performance than the latter.

References

1.
Chen
,
W.
,
Conner
,
C.
, and
Yannou
,
B.
,
2015
, “
User Needs and Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
068001
.
2.
Bi
,
J.-W.
,
Liu
,
Y.
,
Fan
,
Z.-P.
, and
Cambria
,
E.
,
2019
, “
Modelling Customer Satisfaction From Online Reviews Using Ensemble Neural Network and Effect-Based Kano Model
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7068
7088
. 10.1080/00207543.2019.1574989
3.
El Dehaibi
,
N.
,
Goodman
,
N. D.
, and
MacDonald
,
E. F.
,
2019
, “
Extracting Customer Perceptions of Product Sustainability From Online Reviews
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121103
. 10.1115/1.4044522
4.
Jeong
,
B.
,
Yoon
,
J.
, and
Lee
,
J.-m.
,
2017
, “
Social Media Mining for Product Planning: A Product Opportunity Mining Approach Based on Topic Modeling and Sentiment Analysis
,”
Int. J. Inform. Manag.
,
48
, pp.
280
290
. 10.1016/j.ijinfomgt.2017.09.009
5.
Wang
,
W.
,
Feng
,
Y.
, and
Dai
,
W.
,
2018
, “
Topic Analysis of Online Reviews for Two Competitive Products Using Latent Dirichlet Allocation
,”
Electron. Commerce Res. Appl.
,
29
, pp.
142
156
. 10.1016/j.elerap.2018.04.003
6.
Zhou
,
F.
,
Jiao
,
R. J.
, and
Linsey
,
J. S.
,
2015
, “
Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071401
. 10.1115/1.4030159
7.
Zhou
,
F.
,
Ayoub
,
J.
,
Xu
,
Q.
, and
Jessie Yang
,
X.
,
2020
, “
A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011101
. 10.1115/1.4044435
8.
Jiang
,
H.
,
Kwong
,
C.
, and
Yung
,
K.
,
2017
, “
Predicting Future Importance of Product Features Based on Online Customer Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111413
. 10.1115/1.4037348
9.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering
,
Chicago, IL
,
Aug. 12–15
, pp.
533
540
.
10.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
. 10.1115/1.4040913
11.
Denny
,
M. J.
, and
Spirling
,
A.
,
2018
, “
Text Preprocessing for Unsupervised Learning: Why It Matters, When It Misleads, and What to Do About It
,”
Political Anal.
,
26
(
2
), pp.
168
189
. 10.1017/pan.2017.44
12.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining and Summarizing Customer Reviews
,”
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Seattle, WA
,
Aug. 22–25
, pp.
168
177
.
13.
Boyd-Graber
,
J.
,
Mimno
,
D.
, and
Newman
,
D.
,
2014
,
Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements
,
E. M.
Airoldi
,
D.
Blei
,
E. A.
Erosheva
, and
S. E.
Fienberg
, eds., Vol.
225255
,
CRC Press
,
Boca Raton, FL
.
14.
Mankad
,
S.
,
Han
,
H. S.
,
Goh
,
J.
, and
Gavirneni
,
S.
,
2016
, “
Understanding Online Hotel Reviews Through Automated Text Analysis
,”
Service Sci.
,
8
(
2
), pp.
124
138
. 10.1287/serv.2016.0126
15.
Guo
,
Y.
,
Barnes
,
S. J.
, and
Jia
,
Q.
,
2017
, “
Mining Meaning From Online Ratings and Reviews: Tourist Satisfaction Analysis Using Latent Dirichlet Allocation
,”
Tourism Manage.
,
59
, pp.
467
483
. 10.1016/j.tourman.2016.09.009
16.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
17.
Griffiths
,
T. L.
, and
Steyvers
,
M.
,
2004
, “
Finding Scientific Topics
,”
Proc. Natl. Acad. Sci. USA
,
101
(
Suppl 1
), pp.
5228
5235
. 10.1073/pnas.0307752101
18.
Asuncion
,
A.
,
Welling
,
M.
,
Smyth
,
P.
, and
Teh
,
Y. W.
,
2009
, “
On Smoothing and Inference for Topic Models
,”
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
,
Quebec, Canada
,
June
, pp.
27
34
.
19.
Mimno
,
D.
,
Wallach
,
H. M.
,
Talley
,
E.
,
Leenders
,
M.
, and
McCallum
,
A.
,
2011
, “
Optimizing Semantic Coherence in Topic Models
,”
Proceedings of the Conference on Empirical Methods in Natural Language Processing
,
Edinburgh, Scotland, UK
,
July 27–31
, pp.
262
272
.
20.
Chang
,
J.
,
Gerrish
,
S.
,
Wang
,
C.
,
Boyd-Graber
,
J. L.
, and
Blei
,
D. M.
,
2009
, “
Reading Tea Leaves: How Humans Interpret Topic Models
,”
Advances in Neural Information Processing Systems 22
,
Vancouver, British Columbia, Canada
,
Dec. 7–10
, pp.
288
296
.
21.
Rehurek
,
R.
, and
Sojka
,
P.
,
2010
, “
Software Framework for Topic Modelling With Large Corpora
,”
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
,
Valletta, Malta
,
May 22
.
22.
Röder
,
M.
,
Both
,
A.
, and
Hinneburg
,
A.
,
2015
, “
Exploring the Space of Topic Coherence Measures
,”
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining
,
Shanghai, China
,
Feb.
pp.
399
408
.
23.
Sievert
,
C.
, and
Shirley
,
K.
,
2014
, “
Ldavis: A Method for Visualizing and Interpreting Topics
,”
Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces
,
Baltimore, MD
,
June 27
, pp.
63
70
.
24.
Johnson
,
O.
,
2004
,
Information Theory and the Central Limit Theorem
,
Imperial College Press
,
London, UK
.
25.
Ghasemi
,
A.
, and
Zahediasl
,
S.
,
2012
, “
Normality Tests for Statistical Analysis: A Guide for Non-Statisticians
,”
Int. J. Endocrinol. Metabolism
,
10
(
2
), p.
486
. 10.5812/ijem.3505
26.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G. S.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,”
Advances in Neural Information Processing Systems 26
,
Harrahs and Harveys, NV
,
Dec. 5–8
, pp.
3111
3119
.
You do not currently have access to this content.