Abstract

To satisfy the increasing requirements of high-precision and zero-backlash transmission in the modern machine tools and industrial robots, a precision measurement method of roller enveloping hourglass worm tooth surface is demonstrated. The profile modification method of hourglass worm tooth surface is proposed for the zero-backlash meshing, and the mathematical model of standard theoretical tooth surface and actual modified tooth surface is established. The deviations of hourglass worm tooth surface are defined, and the measuring method is proposed based on the gear measuring center. The matching method of theoretical tooth surface and actual tooth surface is analyzed, through establishing the evaluation object function and designing the search iterative method. The roller enveloping hourglass worm sample is ground based on the profile modification principle, and the deviations on the tooth surface are measured by the proposed measurement method. The results turn out that this precision measurement method is feasible. This study is expected to give an evaluation standard to improve the tooth surface accuracy of roller enveloping hourglass worm.

References

1.
Yan
,
H.
, and
Chen
,
H.
,
1994
, “
Geometry Design and Machining of Roller Gear Cams With Cylindrical Rollers
,”
Mech. Mach. Theory
,
29
(
6
), pp.
803
812
. 10.1016/0094-114X(94)90079-5
2.
Getriebe
,
1986
,
Neue Patentanmeldungen
.
Konstruktion, German
.
3.
Deng
,
X.
,
Wang
,
J.
,
Horstemeyer
,
M. F.
,
Solanki
,
K. N.
, and
Zhang
,
J.
,
2012
, “
Parametric Study of Meshing Characteristics With Respect to Different Meshing Rollers of the Antibacklash Double-Roller Enveloping Worm Gear
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081004
. 10.1115/1.4006829
4.
Zhang
,
H.
,
Wang
,
J.
,
Wang
,
S.
,
Wang
,
S.
, and
He
,
G.
,
2019
, “
A Comparative Investigation of Meshing Characteristics of Anti-Backlash Single- and Double-Roller Enveloping Hourglass Worm Gears
,”
J. Adv. Mech. Des. Syst. Manuf.
,
13
(
3
), p.
00279
. 10.1299/jamdsm.2019jamdsm0064
5.
Deng
,
X.
,
Wang
,
J.
, and
Horstemeyer
,
M.
,
2013
, “
Modification Design Method for an Enveloping Hourglass Worm Gear With Consideration of Machining and Misalignment Errors
,”
Chin. J. Mech. Eng.
,
26
(
5
), pp.
948
956
. 10.3901/cjme.2013.05.948
6.
Wang
,
Q.
,
Zhao
,
B.
,
Kong
,
X.
,
Ma
,
H.
, and
Chang
,
J.
,
2019
, “
Time-Varying Mesh Stiffness Analysis of a Single-Roller Enveloping Hourglass Worm Gear
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
2
), pp.
578
592
. 10.1177/0954406218762951
7.
Deng
,
X.
,
Wang
,
J.
,
Wang
,
S.
,
Wang
,
S.
,
Liu
,
Y.
, and
He
,
G.
,
2020
, “
An Optimal Process of Machining Complex Surfaces of Anti-Backlash Roller Enveloping Hourglass Worms
,”
J. Manuf. Process
,
49
, pp.
472
480
. 10.1016/j.jmapro.2019.12.016
8.
Deng
,
X.
,
Wang
,
J.
,
Wang
,
S.
,
Wang
,
S.
,
Wang
,
J.
,
Li
,
S.
,
Liu
,
Y.
, and
He
,
G.
,
2019
, “
Investigation on the Backlash of Roller Enveloping Hourglass Worm Gear: Theoretical Analysis and Experiment
,”
ASME J. Mech. Des.
,
141
(
5
), p.
053302
. 10.1115/1.4042155
9.
Zheng
,
L.
,
Deng
,
X.
,
Wang
,
J.
, and
Yin
,
G.
,
2017
, “
Study on the Roller Enveloping End Face Internal Engagement Worm Gear
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
7
), pp.
2701
2711
(
in Brazilian
). 10.1007/s40430-017-0738-4
10.
Chen
,
H.
,
Ju
,
Z.
,
Qu
,
C.
,
Cai
,
X.
,
Zhang
,
Y.
, and
Liu
,
J.
,
2013
, “
Error-Sensitivity Analysis of Hourglass Worm Gearing With Spherical Meshing Elements
,”
Mech. Mach. Theory
,
70
, pp.
91
105
. 10.1016/j.mechmachthe ory.2013.07.010
11.
Shirzadegan
,
M.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2016
, “
Fully Coupled EHL Model for Simulation of Finite Length Line Cam-Roller Follower Contacts
,”
Tribol. Int.
,
103
, pp.
584
598
. 10.1016/j.triboint.2016. 08.017
12.
Lo
,
J.
,
Tseng
,
C.
, and
Tsay
,
C.
,
2001
, “
A Study on the Bearing Contact of Roller Gear Cams
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
35–36
), pp.
4649
4662
. 10.1016/S0045-7825(00)00337-6
13.
Chang
,
Z.
,
Zhang
,
C.
,
Yang
,
Y.
, and
Wang
,
Y.
,
2001
, “
A Study on Dynamics of Roller Gear Cam System Considering Clearances
,”
Mech. Mach. Theory
,
36
(
1
), pp.
143
152
. 10.1016/S0094-114X(00)00038-0
14.
Pei
,
Y.
,
Xie
,
H.
, and
Tan
,
Q.
,
2020
, “
A Non-Contact High Precision Measuring Method for the Radial Runout of Cylindrical Gear Tooth Profile
,”
Mech. Syst. Signal Process.
,
138
, p.
106543
. 10.1016/j.ymssp.2019.106543
15.
Litvin
,
F.
,
Kuan
,
C.
,
Wang
,
J.
,
Handschuh
,
R.
,
Masseth
,
J.
, and
Maruyama
,
N.
,
1993
, “
Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
995
1001
. 10.1115/1.2919298
16.
Shunmugam
,
M.
,
Narayana
,
S.
, and
Jayaprakash
,
V.
,
1998
, “
Establishing Gear Tooth Surface Geometry and Normal Deviation—Part I—Cylindrical Gears
,”
Mech. Mach. Theory
,
33
(
5
), pp.
517
524
. 10.1016/S0094-114X(9 7)00075-X
17.
Goch
,
G.
,
2003
, “
Gear Metrology
,”
CIRP Ann.
,
52
(
2
), pp.
659
695
.
18.
Wang
,
J.
,
Wang
,
X.
,
Jiang
,
H.
, and
Feng
,
W.
,
2003
, “
Measurement and Compensation of Deviations of Real Tooth Surface of Spiral Bevel Gear
,”
Chin. J. Aeronaut.
,
16
(
3
), pp.
182
186
. 10.1016/S1000-9361 (11)60181-7
19.
Shao
,
W.
,
Ding
,
H.
, and
Tang
,
J.
,
2018
, “
Data-Driven Operation and Compensation Approaches to Tooth Flank Form Error Measurement for Spiral Bevel and Hypoid Gears
,”
Measurement
,
122
, pp.
347
357
. 10.1016/j. measurement.2018.03.004
20.
Takeda
,
R.
,
Fang
,
S.
,
Liu
,
Y.
, and
Komori
,
M.
,
2016
, “
Precision Compensation Method for Tooth Flank Measurement Error of Hypoid Gear
,”
Measurement
,
89
, pp.
305
311
. 10.1016/j.measurement.2016.03.077
21.
Lin
,
C.
,
Cao
,
X.
,
Fan
,
Y.
, and
Zeng
,
D.
,
2016
, “
Pitch Deviation Measurement and Analysis of Curve-Face Gear Pair
,”
Measurement
,
81
, pp.
95
101
. 10.1016/j.measurement.2015.12.006
22.
Shi
,
Z.
,
Yu
,
B.
, and
He
,
F.
,
2016
, “
Precision Measurement of Planar Double-Enveloping Hourglass Worms
,”
Measurement
,
91
, pp.
177
185
. 10.1016/j.measurement.2016.05.021
23.
Yu
,
B.
,
Shi
,
Z.
,
Yan
,
L.
,
Zhang
,
M.
,
He
,
F.
,
Ye
,
Y.
, and
Fu
,
Y.
,
2014
, “
Measurement of Helix Deviation for Planar Double Enveloping Hourglass Worms
,”
International Gear Conference
,
Lyon, France
,
Aug. 26–28
, pp.
6
14
.
24.
Liu
,
Z.
,
Lu
,
H.
,
Wang
,
S. J.
, and
Yu
,
G.
,
2018
, “
Digitization Modeling and CNC Machining for Cone-Generated Double-Enveloping Worm Drive
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
3393
3412
. 10.1007/s00170-017-1404-9
25.
Liu
,
G. L.
,
Wei
,
W. J.
,
Dong
,
X. Z.
,
Rui
,
C.
,
Liu
,
P.
, and
Li
,
H. T.
,
2017
, “
Relief Grinding of Planar Double-Enveloping Worm Gear Hob Using a Four-Axis CNC Grinding Machine
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3631
3640
. 10.1007/s00170-016-9325-6
26.
Zhang
,
S.
,
Chen
,
X.
,
Yu
,
S.
, and
Chen
,
T.
,
2009
, “
Exploration on Applying non-Contact Photoelectric Detection Method for Double-Enveloping Hourglass Worm
,”
International Conference on Manufacturing Science and Engineering
,
Zhuhai, China
,
Dec. 26–28
, pp.
4287
4292
.
27.
Chen
,
Y.
,
Chen
,
Y.
,
Wang
,
J.
, and
Zhang
,
G.
,
2015
, “
Manufacturing and Measuring Investigation of Crown Worm Tooth Surface
,”
J. Adv. Mech. Des. Syst. Manuf.
,
9
(
1
), p.
00360
. 10.1299/jamdsm.2015jamdsm0003
28.
Chen
,
Y.
,
Yin
,
G.
,
Chen
,
Y.
, and
Wang
,
F.
,
2020
, “
Study on the Grinding Technology and Measure Method for Planar Enveloping Hourglass Worm
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4745
4754
. 10.1007/s00170-020-04953-3
29.
Luo
,
W.
,
Chen
,
Y.
, and
Zhang
,
G.
,
2015
, “
Helix Error Testing and Tracing on Planar Enveloping Hourglass Worm Tooth Surface
,”
J. Southwest Jiaotong Univ.
,
50
(
2
), pp.
279
285
. 10.3969/j.issn. 0258-2724.2015.02.011
30.
Chen
,
Y.
,
Chen
,
Y.
,
Luo
,
W.
, and
Zhang
,
G.
,
2015
, “
Development and Classification of Worm Drive
,”
The 14th IFToMM World Congress
,
Taiwan, China
,
Oct. 25–30
, pp.
265
273
.
31.
Muditha
,
D.
, and
Masaomi
,
T.
,
2010
, “
Motion Characteristics of High-Performance CNC Rotary Tables
,”
ASME 2008 International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
.
32.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
New York
.
You do not currently have access to this content.