Abstract
Origami-inspired approaches to deployable or morphing structures have received significant interest. For such applications, the shape of the origami structure must be actively controlled. We propose a distributed network of embedded actuators which open/close individual folds and present a methodology for selecting the positions of these actuators. The deformed shape of the origami structure is tracked throughout its actuation using local curvatures derived from discrete differential geometry. A Genetic Algorithm (GA) is used to select an actuation configuration, which minimizes the number of actuators or input energy required to achieve a target shape. The methodology is applied to both a deployed and twisted Miura-ori sheet. The results show that designing a rigidly foldable pattern to achieve shape-adaptivity does not always minimize the number of actuators or input energy required to reach the target geometry.