Abstract

Origami-inspired approaches to deployable or morphing structures have received significant interest. For such applications, the shape of the origami structure must be actively controlled. We propose a distributed network of embedded actuators which open/close individual folds and present a methodology for selecting the positions of these actuators. The deformed shape of the origami structure is tracked throughout its actuation using local curvatures derived from discrete differential geometry. A Genetic Algorithm (GA) is used to select an actuation configuration, which minimizes the number of actuators or input energy required to achieve a target shape. The methodology is applied to both a deployed and twisted Miura-ori sheet. The results show that designing a rigidly foldable pattern to achieve shape-adaptivity does not always minimize the number of actuators or input energy required to reach the target geometry.

References

1.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Technical Report, The Institute of Space and Astronautical Science
.
2.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts As a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A.
,
419
(
1-2
), pp.
131
137
. 10.1016/j.msea.2005.12.016
3.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
. 10.1038/nmat4540
4.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
. 10.1088/0964-1726/23/9/094006
5.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Design of Origami Structures With Smooth Folds
,”
Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, ASME
, p.
V002T03A018
.
6.
Tachi
,
T.
,
2009
,
Simulation of Rigid Origami
,
A K Peters/CRC Press
,
Boca Raton, FL
, pp.
175
187
.
7.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
. 10.1115/1.4032973
8.
He
,
Z.
, and
Guest
,
S. D.
,
2020
, “
On Rigid Origami II: Quadrilateral Creased Papers
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
476
(
2237
), p.
20200020
. 10.1098/rspa.2020.0020
9.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2019
, “
Strain Reversal in Actuated Origami Structures
,”
Phys. Rev. Lett.
,
123
(
2
), p.
025501
. 10.1103/PhysRevLett.123.025501
10.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
. 10.1126/science.1252876
11.
Zhao
,
Y.
,
Endo
,
Y.
,
Kanamori
,
Y.
, and
Mitani
,
J.
,
2018
, “
Approximating 3D Surfaces Using Generalized Waterbomb Tessellations
,”
J. Comput. Design Eng.
,
5
(
4
), pp.
442
448
. 10.1016/j.jcde.2018.01.002
12.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
28
), pp.
12441
12445
. 10.1073/pnas.0914069107
13.
Lee
,
K.
,
Wang
,
Y.
, and
Zheng
,
C.
,
2020
, “
TWISTER Hand: Underactuated Robotic Gripper Inspired by Origami Twisted Tower
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
1
13
. 10.1109/tro.2019.2956870
14.
Zhang
,
W.
,
Ahmed
,
S.
,
Masters
,
S.
,
Ounaies
,
Z.
, and
Frecker
,
M.
,
2017
, “
Finite Element Analysis of Electroactive Polymer and Magnetoactive Elastomer Based Actuation for Origami Folding
,”
Smart Mater. Struct.
,
26
(
10
), p.
105032
. 10.1088/1361-665x/aa7a82
15.
Koh
,
J.-s.
,
Kim
,
S.-r.
, and
Cho
,
K.-j.
,
2014
, “
Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators
,”
Volume 5B: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
, Vol.
34822
, ASME, p.
V05BT08A043
.
16.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
. 10.1115/1.4025382
17.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Singapore
,
CRC Press
, pp.
291
304
.
18.
Evans
,
A. A.
,
Silverberg
,
J. L.
, and
Santangelo
,
C. D.
,
2015
, “
Lattice Mechanics of Origami Tessellations
,”
Phys. Rev. E
,
92
(
1
), p.
013205
. 10.1103/PhysRevE.92.013205
19.
Santangelo
,
C. D.
,
2017
, “
Extreme Mechanics: Self-Folding Origami
,”
Annu. Rev. Condens. Matter. Phys.
,
8
(
1
), pp.
165
183
. 10.1146/annurev-conmatphys-031016-025316
20.
Nassar
,
H.
,
Lebée
,
A.
, and
Monasse
,
L.
,
2017
, “
Curvature, Metric and Parametrization of Origami Tessellations: Theory and Application to the Eggbox Pattern
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2197
), p.
20160705
. 10.1098/rspa.2016.0705
21.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
. 10.1103/PhysRevLett.110.215501
22.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
. 10.1073/pnas.1217998110
23.
Bowen
,
L.
,
Springsteen
,
K.
,
Frecker
,
M.
, and
Simpson
,
T.
,
2016
, “
Trade Space Exploration of Magnetically Actuated Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
31012
. 10.1115/1.4032406
24.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2016
, “
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051011
. 10.1115/1.4032442
25.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2018
, “
Autonomous Deployment of a Solar Panel Using An Elastic Origami and Distributed Shape Memory Polymer Actuators
,”
Phys. Rev. Appl.
,
10
(
1
), p.
1
. 10.1103/physrevapplied.11.064069
26.
Mulford
,
R. B.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2015
, “
Dynamic Control of Radiative Surface Properties With Origami-Inspired Design
,”
ASME J. Heat. Transfer.
,
138
(
3
), p.
032701
. 10.1115/1.4031749
27.
Kilian
,
M.
,
Monszpart
,
A.
, and
Mitra
,
N. J.
,
2017
, “
String Actuated Curved Folded Surfaces
,”
ACM Trans. Graphics
,
36
(
3
), pp.
1
13
. 10.1145/3072959.3015460
28.
He
,
Z.
, and
Guest
,
S. D.
,
2018
, “
Approximating a Target Surface with 1-DOF Rigid Origami
,”
Origami 7
,
Oxford
,
Tarquin Group
.
29.
Cai
,
J.
,
Ren
,
Z.
,
Ding
,
Y.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2017
, “
Deployment Simulation of Foldable Origami Membrane Structures
,”
Aeros. Sci. Technol.
,
67
,
343
353
. 10.1016/j.ast.2017.04.002
30.
Lebée
,
A.
,
Monasse
,
L.
, and
Nassar
,
H.
,
2018
, “
Fitting Surfaces With the Miura Tessellation
,”
7OSME
,
Oxford
,
Tarquin Group
.
31.
Meyer
,
M.
,
Desbrun
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
,
2003
, “
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
,”
Visualization and Mathematics III
,
H.-C.
Hege
, ed.,
81
,
Springer
,
Berlin Heidelberg
, pp.
35
57
.
32.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
. 10.1115/1.4030876
33.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
. 10.1115/1.4041782
34.
The MathWorks Inc.
, Accessed on: 16/06/2020. “
MATLAB Global Optimization Toolbox
”. https://uk.mathworks.com/help/gads/index.html
35.
Hu
,
Y.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2020
, “
Rigid-Foldable Generalized Miura-ori Tessellations for Three-Dimensional Curved Surfaces
.”
arXiv:2006.04070
.
36.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), pp.
1
11
. 10.1115/1.4038972
You do not currently have access to this content.