Abstract

In the age of Industry 4.0, the capability of health management is critical to the design and maintenance of gas turbines. This study presents a probabilistic method to estimate the low-cycle fatigue (LCF) life of a gas turbine compressor vane carrier (CVC) under varying operating conditions. Sensitivity analysis based on the finite element analysis (FEA) indicates that an operating cycle can be characterized by three predominant contributors to the LCF damage of the CVC among multiple parameters of an operating cycle. Two surrogate models mapping these three features to equivalent stresses are then built for fast computation of the LCF damage. Miner's rule is applied in a probabilistic way to calculate the distribution of accumulated LCF damage over varying operating cycles. Finally, the probabilistic LCF life of the CVC is assessed using real operational data. The proposed approach includes two novel solutions: (1) a new data processing technique inspired by the cumulative sum (CUSUM) control chart to identify the first ramp-up period as well as the shutdown period of each cycle from noisy operational data; (2) the sequential convolution strategy adapted from Miner's rule to compute the probability distribution of accumulated LCF damage (and hence LCF life) from the single-cycle damage distribution, and an approximative quick estimation method to reduce computational expense. Both the offline application for design and online implementation for predictive maintenance show that the expected LCF life at a critical location of the CVC is significantly longer than the deterministically assessed life.

References

References
1.
Li
,
Z.
,
Wang
,
Y.
, and
Wang
,
K.-S.
,
2017
, “
Intelligent Predictive Maintenance for Fault Diagnosis and Prognosis in Machine Centers: Industry 4.0 Scenario
,”
Adv. Manuf.
,
5
(
4
), pp.
377
387
. 10.1007/s40436-017-0203-8
2.
Immarigeon
,
J.-P.
,
Beres
,
W.
,
Au
,
P.
,
Fahr
,
A.
, and
Wallace
,
W.
,
2003
, “
Life Cycle Management Strategies for Aging Engines
,”
National Research Council of Canada Ottawa (Ontario)/Institute For Aerospace Research, Ottawa, Canada
.
3.
Bae
,
H.-R.
,
Ando
,
H.
,
Nam
,
S.
,
Kim
,
S.
, and
Ha
,
C.
,
2015
, “
Fatigue Design Load Identification Using Engineering Data Analytics
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011001
. 10.1115/1.4027849
4.
Thomsen
,
B.
,
Kokkolaras
,
M.
,
Månsson
,
T.
, and
Isaksson
,
O.
,
2017
, “
Quantitative Assessment of the Impact of Alternative Manufacturing Methods on Aeroengine Component Lifing Decisions
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021401
. 10.1115/1.4034883
5.
Acar
,
P.
,
2018
, “
Reliability-Based Design Optimization of Microstructures With Analytical Formulation
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111402
. 10.1115/1.4040881
6.
Schmitz
,
S.
,
Seibel
,
T.
,
Beck
,
T.
,
Rollmann
,
G.
,
Krause
,
R.
, and
Gottschalk
,
H.
,
2013
, “
A Probabilistic Model for LCF
,”
Comput. Mater. Sci.
,
79
, pp.
584
590
. 10.1016/j.commatsci.2013.07.015
7.
Fedelich
,
B.
,
1998
, “
A Stochastic Theory for the Problem of Multiple Surface Crack Coalescence
,”
Int. J. Fract.
,
91
(
1
), pp.
23
45
. 10.1023/A:1007431802050
8.
Schmitz
,
S.
,
Gottschalk
,
H.
,
Rollmann
,
G.
, and
Krause
,
R.
,
2013
, “
Risk Estimation for LCF Crack Initiation
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
.
9.
Mäde
,
L.
,
Schmitz
,
S.
,
Gottschalk
,
H.
, and
Beck
,
T.
,
2018
, “
Combined Notch and Size Effect Modeling in a Local Probabilistic Approach for LCF
,”
Comput. Mater. Sci.
,
142
, pp.
377
388
. 10.1016/j.commatsci.2017.10.022
10.
Mäde
,
L.
,
Gottschalk
,
H.
,
Schmitz
,
S.
,
Beck
,
T.
, and
Rollmann
,
G.
,
2017
, “
Probabilistic LCF Risk Evaluation of a Turbine Vane by Combined Size Effect and Notch Support Modeling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
11.
Poursaeidi
,
E.
,
Kavandi
,
A.
,
Vaezi
,
K.
,
Kalbasi
,
M. R.
, and
Mohammadi Arhani
,
M. R.
,
2014
, “
Fatigue Crack Growth Prediction in a Gas Turbine Casing
,”
Eng. Failure Anal.
,
44
, pp.
371
381
. 10.1016/j.engfailanal.2014.05.010
12.
Poursaeidi
,
E.
, and
Bazvandi
,
H.
,
2016
, “
Effects of Emergency and Fired Shut Down on Transient Thermal Fatigue Life of a Gas Turbine Casing
,”
Appl. Therm. Eng.
,
100
, pp.
453
461
. 10.1016/j.applthermaleng.2016.02.049
13.
Castillo
,
E.
, and
Fernandez-Canteli
,
A.
,
2009
,
A Unified Statistical Methodology for Modeling Fatigue Damage
,
Springer Science & Business Media
.,
New York
.
14.
Babuška
,
I.
,
Sawlan
,
Z.
,
Scavino
,
M.
,
Szabó
,
B.
, and
Tempone
,
R.
,
2016
, “
Bayesian Inference and Model Comparison for Metallic Fatigue Data
,”
Comput. Methods Appl. Mech. Eng.
,
304
, pp.
171
196
. 10.1016/j.cma.2016.02.013
15.
Babuška
,
I.
,
Sawlan
,
Z.
,
Scavino
,
M.
,
Szabó
,
B.
, and
Tempone
,
R.
,
2019
, “
Spatial Poisson Processes for Fatigue Crack Initiation
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
454
475
. 10.1016/j.cma.2018.11.007
16.
Klawonn
,
A.
,
Hagenacker
,
A.
, and
Beck
,
T.
,
2020
, “
A Probabilistic Haigh Diagram Based on a Weakest Link Approach
,”
Int. J. Fatigue
,
133
, p.
105419
. 10.1016/j.ijfatigue.2019.105419
17.
Klawonn
,
A.
, and
Beck
,
T.
,
2020
, “
A Probabilistic Haigh Diagram for Notched Components Considering Notch Root Plasticity Due to High Mean Stresses
,”
Int. J. Fatigue
,
140
, p.
105813
. 10.1016/j.ijfatigue.2020.105813
18.
Hotait
,
M.
, and
Kahraman
,
A.
,
2013
, “
Estimation of Bending Fatigue Life of Hypoid Gears Using a Multiaxial Fatigue Criterion
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101005
. 10.1115/1.4025024
19.
Luo
,
Y.
,
Wang
,
Y.
,
Zhong
,
B.
,
Zhao
,
J.
, and
Zhang
,
X.
,
2019
, “
Fatigue Life Prediction of Vortex Reducer Based on Stress Gradient
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031701
. 10.1115/1.4042189
20.
Lipperheide
,
M.
,
Weidner
,
F.
,
Gassner
,
M.
,
Bernero
,
S.
, and
Wirsum
,
M.
,
2018
, “
Impact of Gas Turbine Cyclic Operation on Engine Aging—An Investigation of the GT24/GT26 Fleet
,”
Proceedings of GPPS Forum 18 Global Power and Propulsion Society
,
Zurich, Switzerland
,
Jan. 10–12
.
21.
Simmons
,
H. R.
,
Troxler
,
P. J.
,
Smalley
,
A. J.
,
Robinson
,
G. J.
, and
Frischmuth
,
R. W.
,
1993
, “
Turning Gear Operation: Its Influence on Combustion Turbine Rotor Eccentricity and Starting Dynamics
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
, American Society of Mechanical Engineers.
22.
Simmons
,
H. R.
,
Smalley
,
A. J.
,
Frischmuth
,
R. W.
,
Lapini
,
G.
, and
Robinson
,
G.
,
1994
, “
Tools for Diagnosing Case Deflections and Alignment on a Power Utility Combustion Turbine
,”
ASME J. Eng. Gas Turb. Power
,
116
(
1
), pp.
190
197
. 10.1115/1.2906791
23.
Sistaninia
,
M.
,
Ugel
,
D.
, and
Olmes
,
S.
,
2017
, “
A New Temperature Based Method for Determination of Lifetime Consumption of Turbo-Machinery Components During Operation
,”
Proc. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V07AT31A001
.
24.
Yan
,
J.
,
Meng
,
Y.
,
Lu
,
L.
, and
Li
,
L.
,
2017
, “
Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance
,”
IEEE Access
,
5
, pp.
23484
23491
. 10.1109/ACCESS.2017.2765544
25.
Sahal
,
R.
,
Breslin
,
J. G.
, and
Ali
,
M. I.
,
2020
, “
Big Data and Stream Processing Platforms for Industry 4.0 Requirements Mapping for a Predictive Maintenance Use Case
,”
J. Manuf. Syst.
,
54
, pp.
138
151
. 10.1016/j.jmsy.2019.11.004
26.
Kiangala
,
K. S.
, and
Wang
,
Z.
,
2018
, “
Initiating Predictive Maintenance for a Conveyor Motor in a Bottling Plant Using Industry 4.0 Concepts
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9
), pp.
3251
3271
. 10.1007/s00170-018-2093-8
27.
Montgomery
,
D. C.
,
2012
,
Introduction to Statistical Quality Control
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
, pp.
A159
A164
.
29.
DeVor
,
R. E.
,
Chang
,
T.
, and
Sutherland
,
J. W.
,
2007
,
Statistical Quality Design and Control: Contemporary Concepts and Methods
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
30.
Wald
,
A.
,
1945
, “
Some Generalizations of the Theory of Cumulative Sums of Random Variables
,”
Ann. Math. Stat.
,
16
(
3
), pp.
287
293
. 10.1214/aoms/1177731092
31.
Committee
,
A. I. H.
,
1996
,
ASM Handbook, Volume 19-Fatigue and Fracture
,
ASM International
.
32.
Schijve
,
J.
,
2008
,
Fatigue of Structures and Materials
,
Springer Science & Business Media
,
New York
.
33.
Mertens
,
N.
,
Alobaid
,
F.
,
Lanz
,
T.
,
Epple
,
B.
, and
Kim
,
H.-G.
,
2016
, “
Dynamic Simulation of a Triple-Pressure Combined-Cycle Plant: Hot Start-Up and Shutdown
,”
Fuel
,
167
, pp.
135
148
. 10.1016/j.fuel.2015.11.055
You do not currently have access to this content.