Abstract

Industry 4.0 promises better control of the overall product development process; however, there is a lack of computational frameworks that can inject human factors engineering principles early in the design. This shortage is particularly crucial for prototyping human-centered products where the stakes are high. Thus, a smooth Industry 4.0 transformation requires keeping ergonomics in the loop, specifically to address the needs in the digitized prototyping process. In this paper, we explore a computational prototyping approach that focuses on various fidelity levels and different human–product interaction levels when conducting ergonomics assessments. Three computational prototyping strategies were explored, including (1) a digital sketchpad-based tool, (2) computer-aided design and digital human modeling-based approach, and (3) a combination of computer-aided design, digital human modeling, and surrogate modeling. These strategies are applied to six case studies to perform various ergonomics assessments (reach, vision, and lower-back). The results from this study show that the designers need to consider the tradeoffs between the accuracy of ergonomic outcomes and resource availability when determining the fidelity level of prototypes. Understanding the intricacies between the fidelity level, type of ergonomic assessment, and human–product interaction level helps designers in getting one step closer to digitizing human-centered prototyping and meeting Industry 4.0 objectives.

References

1.
Schlaepfer
,
R.
,
Koch
,
M.
, and
Merkofer
,
P.
,
2015
, “
Challenges and Solutions for the Digital Transformation and Use of Exponential Technologies
,” Deloitte, https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf
2.
Lin
,
S.
,
Mellor
,
S.
,
Miller
,
B.
,
Durand
,
J.
,
Crawford
,
M.
, and
Lembree
,
R.
,
2015
, “
Industrial Internet Reference Architecture, Version 1.7
,” Industrial Internet Consortium, https://www.iiconsortium.org/IIRA-1-7-ajs.pdf, Zugegriffen am,
3
, p.
2020
.
3.
The Industry of the Future—France in the United Kingdom—la france au royaume-uni
,”
2020
, https://uk.ambafrance.org/The-Industry-of-the-Future, Accessed August 29, 2020.
4.
‘Made in China 2025’ Industrial Policies: Issues for Congress
,”
2020
, https://fas.org/sgp/crs/row/IF10964.pdf, Accessed August 29, 2020.
5.
Rojko
,
A.
,
2017
, “
Industry 4.0 Concept: Background and Overview
,”
Int. J. Int. Mobile Technol. (iJIM)
,
11
(
5
), pp.
77
90
.
6.
Bartodziej
,
C. J.
,
2017
, “The Concept Industry 4.0,”
The Concept Industry 4.0
,
Springer
, pp.
27
50
.
7.
Almada-Lobo
,
F.
,
2015
, “
The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES)
,”
J. Innov. Manage.
,
3
(
4
), pp.
16
21
.
8.
Schlechtendahl
,
J.
,
Keinert
,
M.
,
Kretschmer
,
F.
,
Lechler
,
A.
, and
Verl
,
A.
,
2015
, “
Making Existing Production Systems Industry 4.0-Ready
,”
Prod. Eng.
,
9
(
1
), pp.
143
148
.
9.
Roblek
,
V.
,
Meško
,
M.
, and
Krapež
,
A.
,
2016
, “
A Complex View of Industry 4.0
,”
Sage Open
,
6
(
2
), p.
2158244016653987
.
10.
Babiceanu
,
R. F.
, and
Seker
,
R.
,
2016
, “
Big Data and Virtualization for Manufacturing Cyber-physical Systems: A Survey of the Current Status and Future Outlook
,”
Comput. Ind.
,
81
, pp.
128
137
.
11.
Dalenogare
,
L. S.
,
Benitez
,
G. B.
,
Ayala
,
N. F.
, and
Frank
,
A. G.
,
2018
, “
The Expected Contribution of Industry 4.0 Technologies for Industrial Performance
,”
Int. J. Prod. Econ.
,
204
, pp.
383
394
.
12.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2015
, “
A Cyber-physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
13.
Chen
,
Q.
,
Heydari
,
B.
, and
Moghaddam
,
M.
,
2021
, “
Levering Task Modularity in Reinforcement Learning for Adaptable Industry 4.0 Automation
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071701
.
14.
Posada
,
J.
,
Toro
,
C.
,
Barandiaran
,
I.
,
Oyarzun
,
D.
,
Stricker
,
D.
,
De Amicis
,
R.
,
Pinto
,
E. B.
,
Eisert
,
P.
,
Döllner
,
J.
, and
Vallarino
,
I.
,
2015
, “
Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet
,”
IEEE Comput. Graph. Appl.
,
35
(
2
), pp.
26
40
.
15.
Wang
,
R.
,
Milisavljevic-Syed
,
J.
,
Guo
,
L.
,
Huang
,
Y.
, and
Wang
,
G.
,
2021
, “
Knowledge-Based Design Guidance System for Cloud-Based Decision Support in the Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072001
.
16.
Lu
,
Y.
,
2017
, “
Industry 4.0: A Survey on Technologies, Applications and Open Research Issues
,”
J. Ind. Inform. Int.
,
6
, pp.
1
10
.
17.
Ahmed
,
S.
,
Irshad
,
L.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2019
, “A Comparison Between Virtual Reality and Digital Human Modeling for Proactive Ergonomic Design,”
International Conference on Human–Computer Interaction
,
Duffy
,
V. G.
, ed.,
Lecture Notes in Computer Science: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion
,
Springer International Publishing
,
Orlando, FL
, pp.
3
21
.
18.
Frank
,
A. G.
,
Dalenogare
,
L. S.
, and
Ayala
,
N. F.
,
2019
, “
Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies
,”
Int. J. Prod. Econ.
,
210
, pp.
15
26
.
19.
Demirel
,
H. O.
,
2020
, “
Digital Human-in-the-Loop Framework
,”
International Conference on Human–Computer Interaction
,
Copenhagen, Denmark
,
July 19–24
,
Springer
, pp.
18
32
.
20.
Stanton
,
N. A.
, and
Young
,
M. S.
,
2003
, “
Giving Ergonomics Away? The Application of Ergonomics Methods by Novices
,”
Appl. Ergon.
,
34
(
5
), pp.
479
490
.
21.
Naumann
,
A.
, and
Rötting
,
M.
,
2007
, “
Digital Human Modeling for Design and Evaluation of Human–Machine Systems
,”
MMI-Int.
,
12
, pp.
27
35
.
22.
Ferrise
,
F.
,
Bordegoni
,
M.
, and
Cugini
,
U.
,
2013
, “
Interactive Virtual Prototypes for Testing the Interaction With New Products
,”
Comput. Aided Des. Appl.
,
10
(
3
), pp.
515
525
.
23.
Broek
,
J. J.
,
Sleijffers
,
W.
,
Horváth
,
I.
, and
Lennings
,
A. F.
,
2000
, “
Using Physical Models in Design
,”
Proceedings of CAID/CD’2000 Conference
, pp.
155
163
.
24.
Bi
,
Z.
,
2010
, “
Computer Integrated Reconfigurable Experimental Platform for Ergonomic Study of Vehicle Body Design
,”
Int. J. Comput. Int. Manuf.
,
23
(
11
), pp.
968
978
.
25.
Bullinger
,
H.-J.
, and
Dangelmaier
,
M.
,
2003
, “
Virtual Prototyping and Testing of In-vehicle Interfaces
,”
Ergonomics
,
46
(
1–3
), pp.
41
51
.
26.
Kuutti
,
K.
,
Battarbee
,
K.
,
Sade
,
S.
,
Mattelmaki
,
T.
,
Keinonen
,
T.
,
Teirikko
,
T.
, and
Tornberg
,
A.-M.
,
2001
, “
Virtual Prototypes in Usability Testing
,”
Proceedings of the 34th Annual Hawaii International Conference on System Sciences
,
Maui, HI
,
IEEE
, p.
7
.
27.
Duffy
,
V. G.
,
2007
, “
Modified Virtual Build Methodology for Computer-Aided Ergonomics and Safety
,”
Hum. Factors Ergon. Manuf. Serv. Ind.
,
17
(
5
), pp.
413
422
.
28.
Ahmed
,
S.
,
Irshad
,
L.
, and
Demirel
,
H. O.
,
2019
, “
Computational Prototyping Methods to Design Human Centered Products of High and Low Level Human Interactions
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59278
,
American Society of Mechanical Engineers
, p.
V007T06A047
.
29.
Otto
,
K. N.
and
Wood
,
K. L.
,
2003
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Englewood Cliffs, NJ
.
30.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
Berlin, Germany
.
31.
Zorriassatine
,
F.
,
Wykes
,
C.
,
Parkin
,
R.
, and
Gindy
,
N.
,
2003
, “
A Survey of Virtual Prototyping Techniques for Mechanical Product Development
,”
Proc. Inst. Mech. Eng. B
,
217
(
4
), pp.
513
530
.
32.
Stowe
,
D.
,
2008
, “
Investigating the Role of Prototyping in Mechanical Design Using Case Study Validation
,”
All Theses, 532
, https://tigerprints.clemson.edu/all_theses/532
33.
Jönsson
,
A.
,
2004
, “
Lean Prototyping of Multi-body and Mechatronic Systems
,”
PhD thesis
,
Blekinge Institute of Technology
,
Karlskrona
.
34.
Tseng
,
M. M.
,
Jiao
,
J.
, and
Su
,
C.-J.
,
1997
, “
A Framework of Virtual Design for Product Customization
,”
1997 IEEE 6th International Conference on Emerging Technologies and Factory Automation Proceedings, EFTA’97
,
Los Angeles, CA
,
Sept. 9–12
,
IEEE
, pp.
7
14
.
35.
Hansen
,
C. A.
, and
Özkil
,
A. G.
,
2020
, “
From Idea to Production: A Retrospective and Longitudinal Case Study of Prototypes and Prototyping Strategies
,”
ASME J. Mech. Des.
,
142
(
3
).
36.
Brereton
,
M.
, and
McGarry
,
B.
,
2000
, “
An Observational Study of How Objects Support Engineering Design Thinking and Communication: Implications for the Design of Tangible Media
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
April
,
ACM
, pp.
217
224
.
37.
Alexopoulos
,
K.
,
Mavrikios
,
D.
, and
Chryssolouris
,
G.
,
2013
, “
Ergotoolkit: An Ergonomic Analysis Tool in a Virtual Manufacturing Environment
,”
Int. J. Comput. Int. Manuf.
,
26
(
5
), pp.
440
452
.
38.
Boothe
,
C.
,
Strawderman
,
L.
, and
Hosea
,
E.
,
2013
, “
The Effects of Prototype Medium on Usability Testing
,”
Appl. Ergon.
,
44
(
6
), pp.
1033
1038
.
39.
Walker
,
M.
,
Takayama
,
L.
, and
Landay
,
J. A.
,
2002
, “
High-Fidelity or Low-Fidelity, Paper or Computer? Choosing Attributes When Testing Web Prototypes
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
,
Sept. 1
, Vol.
46
,
SAGE Publications Sage
,
Los Angeles, CA
, pp.
661
665
.
40.
Hall
,
R. R.
,
2001
, “
Prototyping for Usability of New Technology
,”
Int. J. Hum. Comput. Stud.
,
55
(
4
), pp.
485
501
.
41.
Ward
,
S.
,
1994
, “
Getting Feedback From Users Early in the Design Process: A Case Study, Ergonomics: The Fundamental Design Science
,”
Proceedings of the 30th Annual Conference of the Ergonomics Society of Australia
,
The Ergonomics Society of Australia Canberra
, pp.
22
29
.
42.
Virzi
,
R. A.
,
Sokolov
,
J. L.
, and
Karis
,
D.
,
1996
, “
Usability Problem Identification Using Both Low- and High-Fidelity Prototypes
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
Waltham, MA
,
ACM
, pp.
236
243
.
43.
Camburn
,
B.
,
Dunlap
,
B.
,
Gurjar
,
T.
,
Hamon
,
C.
,
Green
,
M.
,
Jensen
,
D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K.
,
2015
, “
A Systematic Method for Design Prototyping
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081102
.
44.
Chaffin
,
D. B.
,
2009
, “Some Requirements and Fundamental Issues in Digital Human Modeling,”
Handbook of Digital Human Modeling
,
V.
Duffy
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
2
1
.
45.
Demirel
,
H. O.
, and
Duffy
,
V. G.
,
2007
, “
Applications of Digital Human Modeling in Industry
,”
International Conference on Digital Human Modeling
,
Beijing, China
,
July 22–27
,
Springer
, pp.
824
832
.
46.
van der Meulen
,
P.
, and
Seidl
,
A.
,
2007
, “
Ramsis—The Leading CAD Tool for Ergonomic Analysis of Vehicles
,”
International Conference on Digital Human Modeling
,
Beijing, China
,
July 22–27
,
Springer
, pp.
1008
1017
.
47.
Santos
,
J.
,
Sarriegi
,
J. M.
,
Serrano
,
N.
, and
Torres
,
J. M.
,
2007
, “
Using Ergonomic Software in Non-repetitive Manufacturing Processes: A Case Study
,”
Int. J. Ind. Ergon.
,
37
(
3
), pp.
267
275
.
48.
Wang
,
W.
,
Sun
,
Y. C.
, and
Kong
,
F.
,
2008
, “Analysis and Study of Ergonomics on Virtual Maintenance of Civil Airplane Based on Delmia,”
Advanced Materials Research
, Vol.
44
,
Trans Tech Publ.
, pp.
821
828
.
49.
Blanchonette
,
P.
,
2010
, “
Jack Human Modelling Tool: A Review
,”
Technical Report, Defence Science and Technology Organisation Victoria (Australia)
.
50.
Polášek
,
P.
,
Bureš
,
M.
, and
Šimon
,
M.
,
2015
, “
Comparison of Digital Tools for Ergonomics in Practice
,”
Procedia Eng.
,
100
, pp.
1277
1285
.
51.
Colombo
,
G.
,
Ponti
,
D. G.
, and
Rizzi
,
C.
,
2009
, “
Digital Human Modeling for Ergonomic Analysis of Refrigerated Cabinets
,”
ICORD 09: Proceedings of the 2nd International Conference on Research Into Design
,
Bangalore, India
,
Jan. 7–9
, pp.
331
338
.
52.
Wang
,
G. G.
,
2002
, “
Definition and Review of Virtual Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
3
), pp.
232
236
.
53.
Ianni
,
J.
,
2001
, “Human Model Evaluations of Air Force System Designs,”
Digital Human Modeling for Vehicle and Workplace Design
,
D. B.
Chaffin
, ed.,
SAE International
, pp.
37
55
.
54.
Ackerman
,
M. J.
,
2016
, “
The Visible Human Project(r): From Body to Bits
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
2016
, pp.
3338
3341
.
55.
Green
,
R. F.
,
Hagale
,
T. J.
,
George
,
T.
,
Hancock
,
G. A.
, and
Rice
,
S. M.
,
2019
, “Digital Human Modeling in Aerospace,”
DHM and Posturography
,
S.
Scataglini
, and
G.
Paul
, eds.,
Elsevier
,
Chicago, IL
, pp.
549
558
.
56.
Choi
,
H. Y.
,
2010
, “
Potential Use of Digital Human Models in Sports Science and Technology
,”
J. Soc. Mech. Eng.
,
113
(
1095
), pp.
96
99
.
57.
Caputo
,
F.
,
Greco
,
A.
,
Fera
,
M.
, and
Macchiaroli
,
R.
,
2019
, “
Workplace Design Ergonomic Validation Based on Multiple Human Factors Assessment Methods and Simulation
,”
Prod. Manuf. Res.
,
7
(
1
), pp.
195
222
.
58.
Demirel
,
H. O.
,
2015
, “
Modular Human-in-the-Loop Design Framework Based on Human Factors
,”
PhD thesis
,
Purdue University
,
West Lafayette, IN
.
59.
Ahmed
,
S.
,
Zhang
,
J.
, and
Demirel
,
O.
,
2018
, “
Assessment of Types of Prototyping in Human-Centered Product Design
,”
International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management
,
Las Vegas, NV
,
July 15–20
,
Springer
, pp.
3
18
.
60.
Sketchpad 5.1—Draw, Create, Share!
,”
2019
, https://sketch.io/sketchpad/, Accessed February 23, 2019.
61.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
,
Sondergaard
,
J.
, and
Dace
,
A.
,
2002
, “
A matlab Kriging Toolbox
,”
Technical University of Denmark, Kongens Lyngby, Technical Report No. IMM-TR-2002-12
.
62.
Huang
,
Z.
,
Wang
,
C.
,
Chen
,
J.
, and
Tian
,
H.
,
2011
, “
Optimal Design of Aeroengine Turbine Disc Based on Kriging Surrogate Models
,”
Comput. Struct.
,
89
(
1–2
), pp.
27
37
.
63.
Ahmed
,
S.
,
Goh
,
C.-H.
,
Allen
,
J. K.
,
Mistree
,
F.
,
Zagade
,
P.
, and
Gautham
,
B.
,
2014
, “
Hot Forging of Automobile Steel Gear Blanks: An Exploration of the Solution Space
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
American Society of Mechanical Engineers
, p.
V02BT03A003
.
64.
Ahmed
,
S.
,
Goh
,
C.-H.
,
Gautham
,
B. P.
,
Zagade
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2014
, “
Design Space Exploration With the Preemptive and Archimedean Formulations of the Compromise Decision Support Problem
,”
Int. J. Adv. Manuf. Sys.
,
15
(
1
), pp.
41
63
.
65.
Gorissen
,
D.
,
Couckuyt
,
I.
,
Demeester
,
P.
,
Dhaene
,
T.
, and
Crombecq
,
K.
,
2010
, “
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
,”
J. Mach. Learn. Res.
,
11
, pp.
2051
2055
.
66.
Audet
,
C.
,
Denni
,
J.
,
Moore
,
D.
,
Booker
,
A.
, and
Frank
,
P.
,
2000
, “
A Surrogate-Model-Based Method for Constrained Optimization
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
, p.
4891
.
67.
Ahmed
,
S.
,
Gawand
,
M. S.
,
Irshad
,
L.
, and
Demirel
,
H. O.
,
2018
, “
Exploring the Design Space Using a Surrogate Model Approach With Digital Human Modeling Simulations
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, p.
V01BT02A011
.
68.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
69.
Goossens
,
R.
,
Snijders
,
C.
, and
Fransen
,
T.
,
2000
, “
Biomechanical Analysis of the Dimensions of Pilot Seats in Civil Aircraft
,”
Appl. Ergon.
,
31
(
1
), pp.
9
14
.
70.
Ahmed
,
S.
,
Irshad
,
L.
,
Gawand
,
M. S.
, and
Demirel
,
H. O.
,
2021
, “
Integrating Human Factors Early in the Design Process Using Digital Human Modelling and Surrogate Modelling
,”
J. Eng. Des.
,
32
(
4
), pp.
165
186
.
You do not currently have access to this content.